T. Schuldt, C. Braxmaier, H. Müller, G. Huber, A. Peters, U. Johann
{"title":"用于空间应用的频率稳定ND:YAG激光器","authors":"T. Schuldt, C. Braxmaier, H. Müller, G. Huber, A. Peters, U. Johann","doi":"10.1117/12.2307968","DOIUrl":null,"url":null,"abstract":"Future space missions rely on the availability of space qualified high precision optical metrology instruments like ultra stable laser sources. Here, we present a compact, frequency-doubled, monolithic Nd:YAG laser (non planar ring-oscillator, NPRO), frequency stabilized to a hyperfine transition in molecular iodine, based on the method of modulation transfer spectroscopy. Using a 10 cm long iodine cell cooled to 1±C and a total light power of ~ 5 mW a frequency stability of 1 • 10-12 for an integration time of τ = 1 s and 3 • 10-13 for τ 5000 s. This setup therefore fulfillls the basic metrological requirements for the LISA and Darwin missions (with potential beyond). Due to very compact construction, it serves as a study and demonstrator for a future space qualified iodine standard.","PeriodicalId":184892,"journal":{"name":"International Conference on Space Optics — ICSO 2004","volume":"120 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2004-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":"{\"title\":\"Frequency stabilized ND:YAG laser for space applications\",\"authors\":\"T. Schuldt, C. Braxmaier, H. Müller, G. Huber, A. Peters, U. Johann\",\"doi\":\"10.1117/12.2307968\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Future space missions rely on the availability of space qualified high precision optical metrology instruments like ultra stable laser sources. Here, we present a compact, frequency-doubled, monolithic Nd:YAG laser (non planar ring-oscillator, NPRO), frequency stabilized to a hyperfine transition in molecular iodine, based on the method of modulation transfer spectroscopy. Using a 10 cm long iodine cell cooled to 1±C and a total light power of ~ 5 mW a frequency stability of 1 • 10-12 for an integration time of τ = 1 s and 3 • 10-13 for τ 5000 s. This setup therefore fulfillls the basic metrological requirements for the LISA and Darwin missions (with potential beyond). Due to very compact construction, it serves as a study and demonstrator for a future space qualified iodine standard.\",\"PeriodicalId\":184892,\"journal\":{\"name\":\"International Conference on Space Optics — ICSO 2004\",\"volume\":\"120 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2004-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Conference on Space Optics — ICSO 2004\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1117/12.2307968\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Conference on Space Optics — ICSO 2004","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.2307968","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Frequency stabilized ND:YAG laser for space applications
Future space missions rely on the availability of space qualified high precision optical metrology instruments like ultra stable laser sources. Here, we present a compact, frequency-doubled, monolithic Nd:YAG laser (non planar ring-oscillator, NPRO), frequency stabilized to a hyperfine transition in molecular iodine, based on the method of modulation transfer spectroscopy. Using a 10 cm long iodine cell cooled to 1±C and a total light power of ~ 5 mW a frequency stability of 1 • 10-12 for an integration time of τ = 1 s and 3 • 10-13 for τ 5000 s. This setup therefore fulfillls the basic metrological requirements for the LISA and Darwin missions (with potential beyond). Due to very compact construction, it serves as a study and demonstrator for a future space qualified iodine standard.