{"title":"事务性内存的高级综合","authors":"Omar Ragheb, J. Anderson","doi":"10.1145/3394885.3431556","DOIUrl":null,"url":null,"abstract":"The rising popularity of high-level synthesis (HLS) is due to the complexity and amount of background knowledge required to design hardware circuits. Despite significant recent advances in HLS research, HLS-generated circuits may be of lower quality than human-expert-designed circuits, from the performance, power, or area perspectives. In this work, we aim to raise circuit performance by introducing a transactional memory (TM) synchronization model to the open-source LegUp HLS tool [1]. LegUp HLS supports the synthesis of multi-threaded software into parallel hardware [4], including support for mutual-exclusion lock-based synchronization. With the introduction of transactional memory-based synchronization, location-specific (i.e. finer grained) memory locks are made possible, where instead of placing an access lock around an entire array, one can place a lock around individual array elements. Significant circuit performance improvements are observed through reduced stalls due to contention, and greater memory-access parallelism. On a set of 5 parallel benchmarks, wall-clock time is improved by 2.0×, on average, by the TM synchronization model vs. mutex-based locks.","PeriodicalId":186307,"journal":{"name":"2021 26th Asia and South Pacific Design Automation Conference (ASP-DAC)","volume":"210 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-01-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"High-Level Synthesis of Transactional Memory\",\"authors\":\"Omar Ragheb, J. Anderson\",\"doi\":\"10.1145/3394885.3431556\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The rising popularity of high-level synthesis (HLS) is due to the complexity and amount of background knowledge required to design hardware circuits. Despite significant recent advances in HLS research, HLS-generated circuits may be of lower quality than human-expert-designed circuits, from the performance, power, or area perspectives. In this work, we aim to raise circuit performance by introducing a transactional memory (TM) synchronization model to the open-source LegUp HLS tool [1]. LegUp HLS supports the synthesis of multi-threaded software into parallel hardware [4], including support for mutual-exclusion lock-based synchronization. With the introduction of transactional memory-based synchronization, location-specific (i.e. finer grained) memory locks are made possible, where instead of placing an access lock around an entire array, one can place a lock around individual array elements. Significant circuit performance improvements are observed through reduced stalls due to contention, and greater memory-access parallelism. On a set of 5 parallel benchmarks, wall-clock time is improved by 2.0×, on average, by the TM synchronization model vs. mutex-based locks.\",\"PeriodicalId\":186307,\"journal\":{\"name\":\"2021 26th Asia and South Pacific Design Automation Conference (ASP-DAC)\",\"volume\":\"210 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-01-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 26th Asia and South Pacific Design Automation Conference (ASP-DAC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3394885.3431556\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 26th Asia and South Pacific Design Automation Conference (ASP-DAC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3394885.3431556","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
The rising popularity of high-level synthesis (HLS) is due to the complexity and amount of background knowledge required to design hardware circuits. Despite significant recent advances in HLS research, HLS-generated circuits may be of lower quality than human-expert-designed circuits, from the performance, power, or area perspectives. In this work, we aim to raise circuit performance by introducing a transactional memory (TM) synchronization model to the open-source LegUp HLS tool [1]. LegUp HLS supports the synthesis of multi-threaded software into parallel hardware [4], including support for mutual-exclusion lock-based synchronization. With the introduction of transactional memory-based synchronization, location-specific (i.e. finer grained) memory locks are made possible, where instead of placing an access lock around an entire array, one can place a lock around individual array elements. Significant circuit performance improvements are observed through reduced stalls due to contention, and greater memory-access parallelism. On a set of 5 parallel benchmarks, wall-clock time is improved by 2.0×, on average, by the TM synchronization model vs. mutex-based locks.