基于深度卷积神经网络的糖尿病足热图像分类

R. Yousef, M. Eid, M. A. Mohamed
{"title":"基于深度卷积神经网络的糖尿病足热图像分类","authors":"R. Yousef, M. Eid, M. A. Mohamed","doi":"10.54216/jisiot.080102","DOIUrl":null,"url":null,"abstract":"Diabetic foot (DF) is one of the most common chronic complications of poorly controlled diabetes mellitus (DM). Early diagnosis of DF and effective treatment is usually difficult by traditional approaches. Lately, it has been found a strong relationship between temperature variation and diabetic foot ulcer emergence. Thus, the current study focused on monitoring the temperature of feet using thermal images and its analysis techniques. The proposed system was based on employing a deep convolutional neural network (CNN) on thermal foot images. Experimental results showed that the proposed CNN has a maximum accuracy of 99.3% with minimum losses. When comparing the proposed system to other relevant systems, the proposed system approved greater accuracy, lower elapsed and testing time, which offers an automatic diagnostic tool for the diabetic foot and differentiates between its types. Thus, a simple, cost-effective, and accurate computer aided design (CAD) system could be presented to get a valuable system for the clinicians in hospitals.","PeriodicalId":122556,"journal":{"name":"Journal of Intelligent Systems and Internet of Things","volume":"39 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Classification of Diabetic Foot Thermal Images Using Deep Convolutional Neural Network\",\"authors\":\"R. Yousef, M. Eid, M. A. Mohamed\",\"doi\":\"10.54216/jisiot.080102\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Diabetic foot (DF) is one of the most common chronic complications of poorly controlled diabetes mellitus (DM). Early diagnosis of DF and effective treatment is usually difficult by traditional approaches. Lately, it has been found a strong relationship between temperature variation and diabetic foot ulcer emergence. Thus, the current study focused on monitoring the temperature of feet using thermal images and its analysis techniques. The proposed system was based on employing a deep convolutional neural network (CNN) on thermal foot images. Experimental results showed that the proposed CNN has a maximum accuracy of 99.3% with minimum losses. When comparing the proposed system to other relevant systems, the proposed system approved greater accuracy, lower elapsed and testing time, which offers an automatic diagnostic tool for the diabetic foot and differentiates between its types. Thus, a simple, cost-effective, and accurate computer aided design (CAD) system could be presented to get a valuable system for the clinicians in hospitals.\",\"PeriodicalId\":122556,\"journal\":{\"name\":\"Journal of Intelligent Systems and Internet of Things\",\"volume\":\"39 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Intelligent Systems and Internet of Things\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.54216/jisiot.080102\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Intelligent Systems and Internet of Things","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.54216/jisiot.080102","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

糖尿病足(DF)是控制不良的糖尿病(DM)最常见的慢性并发症之一。早期诊断和有效的治疗通常是困难的传统方法。最近,人们发现温度变化与糖尿病足溃疡的发生有很强的关系。因此,目前的研究重点是利用热图像及其分析技术监测足部温度。该系统基于对热足图像的深度卷积神经网络(CNN)。实验结果表明,本文提出的CNN具有99.3%的最高准确率和最小的损失。当与其他相关系统进行比较时,所提出的系统具有更高的准确性,更短的运行时间和测试时间,为糖尿病足提供了一种自动诊断工具,并可区分其类型。因此,一个简单、经济、准确的计算机辅助设计(CAD)系统可以为医院临床医生提供一个有价值的系统。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Classification of Diabetic Foot Thermal Images Using Deep Convolutional Neural Network
Diabetic foot (DF) is one of the most common chronic complications of poorly controlled diabetes mellitus (DM). Early diagnosis of DF and effective treatment is usually difficult by traditional approaches. Lately, it has been found a strong relationship between temperature variation and diabetic foot ulcer emergence. Thus, the current study focused on monitoring the temperature of feet using thermal images and its analysis techniques. The proposed system was based on employing a deep convolutional neural network (CNN) on thermal foot images. Experimental results showed that the proposed CNN has a maximum accuracy of 99.3% with minimum losses. When comparing the proposed system to other relevant systems, the proposed system approved greater accuracy, lower elapsed and testing time, which offers an automatic diagnostic tool for the diabetic foot and differentiates between its types. Thus, a simple, cost-effective, and accurate computer aided design (CAD) system could be presented to get a valuable system for the clinicians in hospitals.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.70
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信