Hsiu-Chen Fan Chiang, Peiwen Jiang, Chia-Chien Chang
{"title":"谷歌搜索趋势和汇率波动-来自印度货币市场的证据","authors":"Hsiu-Chen Fan Chiang, Peiwen Jiang, Chia-Chien Chang","doi":"10.1108/S2514-465020210000009010","DOIUrl":null,"url":null,"abstract":"We empirically investigate the forecasting ability of USD-INR exchange rate volatility models by considering Google Trends data. Within a multiple regression framework, we use historical volatility and liquidity measures to build our benchmark volatility model (Chandra & Thenmozhi, 2014). Moreover, we extend Bulut (2018) to incorporate indexes for 15 keywords (price-related, income-related, and liquidity-related) from Google Trends data into our benchmark volatility model to evaluate the forecasting ability of the models. Our results indicate that Google Trends data can improve volatility prediction and that among the groups of keywords that we consider, the price-related keywords have the best forecasting ability. Incorporating data on searches for “prices” into the model produces the highest reduction in the forecasting error: a 22.75% decrease compared to the level in the benchmark model. Hence, these empirical findings indicate that Google Trends data contain information that influences exchange rate movements.","PeriodicalId":228644,"journal":{"name":"Advances in Pacific Basin Business, Economics and Finance","volume":"299 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Google Search Trends and Exchange Rate Volatility – Evidence from India's Currency Market\",\"authors\":\"Hsiu-Chen Fan Chiang, Peiwen Jiang, Chia-Chien Chang\",\"doi\":\"10.1108/S2514-465020210000009010\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We empirically investigate the forecasting ability of USD-INR exchange rate volatility models by considering Google Trends data. Within a multiple regression framework, we use historical volatility and liquidity measures to build our benchmark volatility model (Chandra & Thenmozhi, 2014). Moreover, we extend Bulut (2018) to incorporate indexes for 15 keywords (price-related, income-related, and liquidity-related) from Google Trends data into our benchmark volatility model to evaluate the forecasting ability of the models. Our results indicate that Google Trends data can improve volatility prediction and that among the groups of keywords that we consider, the price-related keywords have the best forecasting ability. Incorporating data on searches for “prices” into the model produces the highest reduction in the forecasting error: a 22.75% decrease compared to the level in the benchmark model. Hence, these empirical findings indicate that Google Trends data contain information that influences exchange rate movements.\",\"PeriodicalId\":228644,\"journal\":{\"name\":\"Advances in Pacific Basin Business, Economics and Finance\",\"volume\":\"299 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-07-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Pacific Basin Business, Economics and Finance\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1108/S2514-465020210000009010\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Pacific Basin Business, Economics and Finance","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1108/S2514-465020210000009010","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Google Search Trends and Exchange Rate Volatility – Evidence from India's Currency Market
We empirically investigate the forecasting ability of USD-INR exchange rate volatility models by considering Google Trends data. Within a multiple regression framework, we use historical volatility and liquidity measures to build our benchmark volatility model (Chandra & Thenmozhi, 2014). Moreover, we extend Bulut (2018) to incorporate indexes for 15 keywords (price-related, income-related, and liquidity-related) from Google Trends data into our benchmark volatility model to evaluate the forecasting ability of the models. Our results indicate that Google Trends data can improve volatility prediction and that among the groups of keywords that we consider, the price-related keywords have the best forecasting ability. Incorporating data on searches for “prices” into the model produces the highest reduction in the forecasting error: a 22.75% decrease compared to the level in the benchmark model. Hence, these empirical findings indicate that Google Trends data contain information that influences exchange rate movements.