通过众包地理参考照片发现基于区域的地标

Yen-Ta Huang, A. Cheng, Liang-Chi Hsieh, Winston H. Hsu, Kuo-Wei Chang
{"title":"通过众包地理参考照片发现基于区域的地标","authors":"Yen-Ta Huang, A. Cheng, Liang-Chi Hsieh, Winston H. Hsu, Kuo-Wei Chang","doi":"10.1145/2009916.2010089","DOIUrl":null,"url":null,"abstract":"We propose a novel model for landmark discovery that locates region-based landmarks on map in contrast to the traditional point-based landmarks. The proposed method preserves more information and automatically identifies candidate regions on map by crowdsourcing geo-referenced photos. Gaussian kernel convolution is applied to remove noises and generate detected region. We adopt F1 measure to evaluate discovered landmarks and manually check the association between tags and regions. The experiment results show that more than 90% of attractions in the selected city can be correctly located by this method.","PeriodicalId":356580,"journal":{"name":"Proceedings of the 34th international ACM SIGIR conference on Research and development in Information Retrieval","volume":"39 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Region-based landmark discovery by crowdsourcing geo-referenced photos\",\"authors\":\"Yen-Ta Huang, A. Cheng, Liang-Chi Hsieh, Winston H. Hsu, Kuo-Wei Chang\",\"doi\":\"10.1145/2009916.2010089\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We propose a novel model for landmark discovery that locates region-based landmarks on map in contrast to the traditional point-based landmarks. The proposed method preserves more information and automatically identifies candidate regions on map by crowdsourcing geo-referenced photos. Gaussian kernel convolution is applied to remove noises and generate detected region. We adopt F1 measure to evaluate discovered landmarks and manually check the association between tags and regions. The experiment results show that more than 90% of attractions in the selected city can be correctly located by this method.\",\"PeriodicalId\":356580,\"journal\":{\"name\":\"Proceedings of the 34th international ACM SIGIR conference on Research and development in Information Retrieval\",\"volume\":\"39 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-07-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 34th international ACM SIGIR conference on Research and development in Information Retrieval\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2009916.2010089\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 34th international ACM SIGIR conference on Research and development in Information Retrieval","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2009916.2010089","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

我们提出了一种新的地标发现模型,该模型将基于区域的地标定位在地图上,而不是传统的基于点的地标。该方法保留了更多的信息,并通过众包地理参考照片在地图上自动识别候选区域。采用高斯核卷积去除噪声,生成检测区域。我们采用F1度量来评估发现的地标,并手动检查标签和区域之间的关联。实验结果表明,该方法可以对所选城市90%以上的景点进行正确定位。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Region-based landmark discovery by crowdsourcing geo-referenced photos
We propose a novel model for landmark discovery that locates region-based landmarks on map in contrast to the traditional point-based landmarks. The proposed method preserves more information and automatically identifies candidate regions on map by crowdsourcing geo-referenced photos. Gaussian kernel convolution is applied to remove noises and generate detected region. We adopt F1 measure to evaluate discovered landmarks and manually check the association between tags and regions. The experiment results show that more than 90% of attractions in the selected city can be correctly located by this method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信