{"title":"非齐次马尔可夫链的精确非精确计算","authors":"J. Reznícek, Martin Kohlík, H. Kubátová","doi":"10.1109/DSD.2019.00074","DOIUrl":null,"url":null,"abstract":"Dependability models allow calculating the rate of events leading to a hazard state - a situation, where safety of the modeled dependable system is violated, thus the system may cause material loss, serious injuries or casualties. Hierarchical dependability models allow expressing multiple redundancies made at multiple levels of a system consisting of multiple cooperating blocks. The hazard rates of the blocks are calculated independently and, when combined, they are used to calculate the hazard rate of the whole system. The independent calculations are significantly faster than the calculation of a single model composed of all models of the blocks. The paper shows a method of calculating the hazard rate of the non-homogeneous Markov chains using different homogeneous probability matrices for several hundreds small time intervals. This method will allow us to calculate the hazard rate of the non-homogeneous Markov chain very accurately compared to methods based on homogeneous Markov chains.","PeriodicalId":217233,"journal":{"name":"2019 22nd Euromicro Conference on Digital System Design (DSD)","volume":"101 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Accurate Inexact Calculations of Non-Homogeneous Markov Chains\",\"authors\":\"J. Reznícek, Martin Kohlík, H. Kubátová\",\"doi\":\"10.1109/DSD.2019.00074\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Dependability models allow calculating the rate of events leading to a hazard state - a situation, where safety of the modeled dependable system is violated, thus the system may cause material loss, serious injuries or casualties. Hierarchical dependability models allow expressing multiple redundancies made at multiple levels of a system consisting of multiple cooperating blocks. The hazard rates of the blocks are calculated independently and, when combined, they are used to calculate the hazard rate of the whole system. The independent calculations are significantly faster than the calculation of a single model composed of all models of the blocks. The paper shows a method of calculating the hazard rate of the non-homogeneous Markov chains using different homogeneous probability matrices for several hundreds small time intervals. This method will allow us to calculate the hazard rate of the non-homogeneous Markov chain very accurately compared to methods based on homogeneous Markov chains.\",\"PeriodicalId\":217233,\"journal\":{\"name\":\"2019 22nd Euromicro Conference on Digital System Design (DSD)\",\"volume\":\"101 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 22nd Euromicro Conference on Digital System Design (DSD)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/DSD.2019.00074\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 22nd Euromicro Conference on Digital System Design (DSD)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DSD.2019.00074","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Accurate Inexact Calculations of Non-Homogeneous Markov Chains
Dependability models allow calculating the rate of events leading to a hazard state - a situation, where safety of the modeled dependable system is violated, thus the system may cause material loss, serious injuries or casualties. Hierarchical dependability models allow expressing multiple redundancies made at multiple levels of a system consisting of multiple cooperating blocks. The hazard rates of the blocks are calculated independently and, when combined, they are used to calculate the hazard rate of the whole system. The independent calculations are significantly faster than the calculation of a single model composed of all models of the blocks. The paper shows a method of calculating the hazard rate of the non-homogeneous Markov chains using different homogeneous probability matrices for several hundreds small time intervals. This method will allow us to calculate the hazard rate of the non-homogeneous Markov chain very accurately compared to methods based on homogeneous Markov chains.