Marcelo Bissi Pires, J. J. A. Mendes Junior, S. Stevan Jr.
{"title":"基于ADS1299的8通道表面肌电信号无线设备的开发","authors":"Marcelo Bissi Pires, J. J. A. Mendes Junior, S. Stevan Jr.","doi":"10.3895/JAIC.V6N1.9163","DOIUrl":null,"url":null,"abstract":"In this paper, a different approach on the use of the ADS1299 (an analog front-end with features for electroencephalogram and electrocardiography signal acquisition) is considered, proposing the development of a surface electromyography (sEMG) device. The main features of the device include simultaneous recordings of eight muscular channels, wireless transmission and virtual instrumentation with the use of LabVIEWTM software. The proposed sEMG device contains a specifically designed protocol to accommodate data transmission by reducing the data size while still delivering adequate resolution (34.33 μV), amplitude range (±17.57 mV) and sampling rate (1000 Hz) for sEMG signals. For the validation methods, a generated sine wave and a known sEMG data were evaluated. Moreover, the muscular recordings for all the eight channels of a human arm were successful and the results expose the isolated contractions of the triceps and the biceps with their amplitude range and frequency spectrum.","PeriodicalId":346963,"journal":{"name":"Journal of Applied Instrumentation and Control","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2018-08-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Development of an 8 channel sEMG wireless device based on ADS1299 with Virtual Instrumentation\",\"authors\":\"Marcelo Bissi Pires, J. J. A. Mendes Junior, S. Stevan Jr.\",\"doi\":\"10.3895/JAIC.V6N1.9163\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, a different approach on the use of the ADS1299 (an analog front-end with features for electroencephalogram and electrocardiography signal acquisition) is considered, proposing the development of a surface electromyography (sEMG) device. The main features of the device include simultaneous recordings of eight muscular channels, wireless transmission and virtual instrumentation with the use of LabVIEWTM software. The proposed sEMG device contains a specifically designed protocol to accommodate data transmission by reducing the data size while still delivering adequate resolution (34.33 μV), amplitude range (±17.57 mV) and sampling rate (1000 Hz) for sEMG signals. For the validation methods, a generated sine wave and a known sEMG data were evaluated. Moreover, the muscular recordings for all the eight channels of a human arm were successful and the results expose the isolated contractions of the triceps and the biceps with their amplitude range and frequency spectrum.\",\"PeriodicalId\":346963,\"journal\":{\"name\":\"Journal of Applied Instrumentation and Control\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-08-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Applied Instrumentation and Control\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3895/JAIC.V6N1.9163\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Applied Instrumentation and Control","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3895/JAIC.V6N1.9163","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Development of an 8 channel sEMG wireless device based on ADS1299 with Virtual Instrumentation
In this paper, a different approach on the use of the ADS1299 (an analog front-end with features for electroencephalogram and electrocardiography signal acquisition) is considered, proposing the development of a surface electromyography (sEMG) device. The main features of the device include simultaneous recordings of eight muscular channels, wireless transmission and virtual instrumentation with the use of LabVIEWTM software. The proposed sEMG device contains a specifically designed protocol to accommodate data transmission by reducing the data size while still delivering adequate resolution (34.33 μV), amplitude range (±17.57 mV) and sampling rate (1000 Hz) for sEMG signals. For the validation methods, a generated sine wave and a known sEMG data were evaluated. Moreover, the muscular recordings for all the eight channels of a human arm were successful and the results expose the isolated contractions of the triceps and the biceps with their amplitude range and frequency spectrum.