最小监督下的学习:转导迁移学习的一般框架

M. T. Bahadori, Yan Liu, Dan Zhang
{"title":"最小监督下的学习:转导迁移学习的一般框架","authors":"M. T. Bahadori, Yan Liu, Dan Zhang","doi":"10.1109/ICDM.2011.92","DOIUrl":null,"url":null,"abstract":"Transductive transfer learning is one special type of transfer learning problem, in which abundant labeled examples are available in the source domain and only \\textit{unlabeled} examples are available in the target domain. It easily finds applications in spam filtering, microblogging mining and so on. In this paper, we propose a general framework to solve the problem by mapping the input features in both the source domain and target domain into a shared latent space and simultaneously minimizing the feature reconstruction loss and prediction loss. We develop one specific example of the framework, namely latent large-margin transductive transfer learning (LATTL) algorithm, and analyze its theoretic bound of classification loss via Rademacher complexity. We also provide a unified view of several popular transfer learning algorithms under our framework. Experiment results on one synthetic dataset and three application datasets demonstrate the advantages of the proposed algorithm over the other state-of-the-art ones.","PeriodicalId":106216,"journal":{"name":"2011 IEEE 11th International Conference on Data Mining","volume":"55 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"30","resultStr":"{\"title\":\"Learning with Minimum Supervision: A General Framework for Transductive Transfer Learning\",\"authors\":\"M. T. Bahadori, Yan Liu, Dan Zhang\",\"doi\":\"10.1109/ICDM.2011.92\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Transductive transfer learning is one special type of transfer learning problem, in which abundant labeled examples are available in the source domain and only \\\\textit{unlabeled} examples are available in the target domain. It easily finds applications in spam filtering, microblogging mining and so on. In this paper, we propose a general framework to solve the problem by mapping the input features in both the source domain and target domain into a shared latent space and simultaneously minimizing the feature reconstruction loss and prediction loss. We develop one specific example of the framework, namely latent large-margin transductive transfer learning (LATTL) algorithm, and analyze its theoretic bound of classification loss via Rademacher complexity. We also provide a unified view of several popular transfer learning algorithms under our framework. Experiment results on one synthetic dataset and three application datasets demonstrate the advantages of the proposed algorithm over the other state-of-the-art ones.\",\"PeriodicalId\":106216,\"journal\":{\"name\":\"2011 IEEE 11th International Conference on Data Mining\",\"volume\":\"55 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-12-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"30\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 IEEE 11th International Conference on Data Mining\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICDM.2011.92\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 IEEE 11th International Conference on Data Mining","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDM.2011.92","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 30

摘要

转换迁移学习是一种特殊类型的迁移学习问题,其源域具有丰富的标记样例,而目标域只有\textit{未标记}样例。它很容易在垃圾邮件过滤、微博挖掘等方面找到应用。在本文中,我们提出了一个通用的框架来解决这个问题,将源域和目标域的输入特征映射到一个共享的潜在空间中,同时最小化特征重建损失和预测损失。我们开发了该框架的一个具体示例,即潜在大边界转导迁移学习(LATTL)算法,并通过Rademacher复杂度分析了其分类损失的理论界。我们还在我们的框架下提供了几种流行的迁移学习算法的统一视图。在一个合成数据集和三个应用数据集上的实验结果表明,该算法优于其他最新算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Learning with Minimum Supervision: A General Framework for Transductive Transfer Learning
Transductive transfer learning is one special type of transfer learning problem, in which abundant labeled examples are available in the source domain and only \textit{unlabeled} examples are available in the target domain. It easily finds applications in spam filtering, microblogging mining and so on. In this paper, we propose a general framework to solve the problem by mapping the input features in both the source domain and target domain into a shared latent space and simultaneously minimizing the feature reconstruction loss and prediction loss. We develop one specific example of the framework, namely latent large-margin transductive transfer learning (LATTL) algorithm, and analyze its theoretic bound of classification loss via Rademacher complexity. We also provide a unified view of several popular transfer learning algorithms under our framework. Experiment results on one synthetic dataset and three application datasets demonstrate the advantages of the proposed algorithm over the other state-of-the-art ones.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信