{"title":"最小监督下的学习:转导迁移学习的一般框架","authors":"M. T. Bahadori, Yan Liu, Dan Zhang","doi":"10.1109/ICDM.2011.92","DOIUrl":null,"url":null,"abstract":"Transductive transfer learning is one special type of transfer learning problem, in which abundant labeled examples are available in the source domain and only \\textit{unlabeled} examples are available in the target domain. It easily finds applications in spam filtering, microblogging mining and so on. In this paper, we propose a general framework to solve the problem by mapping the input features in both the source domain and target domain into a shared latent space and simultaneously minimizing the feature reconstruction loss and prediction loss. We develop one specific example of the framework, namely latent large-margin transductive transfer learning (LATTL) algorithm, and analyze its theoretic bound of classification loss via Rademacher complexity. We also provide a unified view of several popular transfer learning algorithms under our framework. Experiment results on one synthetic dataset and three application datasets demonstrate the advantages of the proposed algorithm over the other state-of-the-art ones.","PeriodicalId":106216,"journal":{"name":"2011 IEEE 11th International Conference on Data Mining","volume":"55 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"30","resultStr":"{\"title\":\"Learning with Minimum Supervision: A General Framework for Transductive Transfer Learning\",\"authors\":\"M. T. Bahadori, Yan Liu, Dan Zhang\",\"doi\":\"10.1109/ICDM.2011.92\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Transductive transfer learning is one special type of transfer learning problem, in which abundant labeled examples are available in the source domain and only \\\\textit{unlabeled} examples are available in the target domain. It easily finds applications in spam filtering, microblogging mining and so on. In this paper, we propose a general framework to solve the problem by mapping the input features in both the source domain and target domain into a shared latent space and simultaneously minimizing the feature reconstruction loss and prediction loss. We develop one specific example of the framework, namely latent large-margin transductive transfer learning (LATTL) algorithm, and analyze its theoretic bound of classification loss via Rademacher complexity. We also provide a unified view of several popular transfer learning algorithms under our framework. Experiment results on one synthetic dataset and three application datasets demonstrate the advantages of the proposed algorithm over the other state-of-the-art ones.\",\"PeriodicalId\":106216,\"journal\":{\"name\":\"2011 IEEE 11th International Conference on Data Mining\",\"volume\":\"55 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-12-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"30\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 IEEE 11th International Conference on Data Mining\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICDM.2011.92\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 IEEE 11th International Conference on Data Mining","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDM.2011.92","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Learning with Minimum Supervision: A General Framework for Transductive Transfer Learning
Transductive transfer learning is one special type of transfer learning problem, in which abundant labeled examples are available in the source domain and only \textit{unlabeled} examples are available in the target domain. It easily finds applications in spam filtering, microblogging mining and so on. In this paper, we propose a general framework to solve the problem by mapping the input features in both the source domain and target domain into a shared latent space and simultaneously minimizing the feature reconstruction loss and prediction loss. We develop one specific example of the framework, namely latent large-margin transductive transfer learning (LATTL) algorithm, and analyze its theoretic bound of classification loss via Rademacher complexity. We also provide a unified view of several popular transfer learning algorithms under our framework. Experiment results on one synthetic dataset and three application datasets demonstrate the advantages of the proposed algorithm over the other state-of-the-art ones.