一种新的(t,n)阈值秘密共享方案

Chunming Tang, Z. Yao
{"title":"一种新的(t,n)阈值秘密共享方案","authors":"Chunming Tang, Z. Yao","doi":"10.1109/ICACTE.2008.139","DOIUrl":null,"url":null,"abstract":"In a traditional (t,n)-threshold secret sharing scheme, the secret key K can be shared only one time for this reason that one of participants, who participates in reconstruction of K, may be dishonest and probably leaks K. In this paper, based on multiprover zero-knowledge arguments and secure multiparty computation protocol, we will construct a (t,n)-threshold secret sharing scheme in which the secret key K will be shared forever if at most t-1 participants are dishonest and discrete logarithm problem is hard.","PeriodicalId":364568,"journal":{"name":"2008 International Conference on Advanced Computer Theory and Engineering","volume":"34 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":"{\"title\":\"A New (t,n)-Threshold Secret Sharing Scheme\",\"authors\":\"Chunming Tang, Z. Yao\",\"doi\":\"10.1109/ICACTE.2008.139\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In a traditional (t,n)-threshold secret sharing scheme, the secret key K can be shared only one time for this reason that one of participants, who participates in reconstruction of K, may be dishonest and probably leaks K. In this paper, based on multiprover zero-knowledge arguments and secure multiparty computation protocol, we will construct a (t,n)-threshold secret sharing scheme in which the secret key K will be shared forever if at most t-1 participants are dishonest and discrete logarithm problem is hard.\",\"PeriodicalId\":364568,\"journal\":{\"name\":\"2008 International Conference on Advanced Computer Theory and Engineering\",\"volume\":\"34 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-12-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2008 International Conference on Advanced Computer Theory and Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICACTE.2008.139\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 International Conference on Advanced Computer Theory and Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICACTE.2008.139","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

摘要

在传统的(t,n)阈值秘密共享方案中,秘密密钥K只能共享一次,原因是参与K重构的参与者之一可能不诚实,可能泄露K。本文基于多证明者零知识论证和安全多方计算协议,我们将构造一个(t,n)阈值秘密共享方案,在该方案中,如果最多有t-1个参与者是不诚实的,并且离散对数问题很难,那么秘密密钥K将永远被共享。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A New (t,n)-Threshold Secret Sharing Scheme
In a traditional (t,n)-threshold secret sharing scheme, the secret key K can be shared only one time for this reason that one of participants, who participates in reconstruction of K, may be dishonest and probably leaks K. In this paper, based on multiprover zero-knowledge arguments and secure multiparty computation protocol, we will construct a (t,n)-threshold secret sharing scheme in which the secret key K will be shared forever if at most t-1 participants are dishonest and discrete logarithm problem is hard.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信