基于深度学习的通用DPD系统

C. I, Yingchao Lin, Guizhen Wang
{"title":"基于深度学习的通用DPD系统","authors":"C. I, Yingchao Lin, Guizhen Wang","doi":"10.1109/IEDM13553.2020.9371952","DOIUrl":null,"url":null,"abstract":"Facing the severe power consumption and energy efficiency challenges in 5G era, a novel DPD solution enabled by deep learning and big data is proposed. This is a flexible system suitable for various wireless network architectures and diverse application scenarios. The architecture, mechanism and deployment strategy along with its advantages are presented. Preliminary validation and analyses are also illustrated for the feasibility.","PeriodicalId":415186,"journal":{"name":"2020 IEEE International Electron Devices Meeting (IEDM)","volume":"57 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Deep Learning Enabled Universal DPD System\",\"authors\":\"C. I, Yingchao Lin, Guizhen Wang\",\"doi\":\"10.1109/IEDM13553.2020.9371952\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Facing the severe power consumption and energy efficiency challenges in 5G era, a novel DPD solution enabled by deep learning and big data is proposed. This is a flexible system suitable for various wireless network architectures and diverse application scenarios. The architecture, mechanism and deployment strategy along with its advantages are presented. Preliminary validation and analyses are also illustrated for the feasibility.\",\"PeriodicalId\":415186,\"journal\":{\"name\":\"2020 IEEE International Electron Devices Meeting (IEDM)\",\"volume\":\"57 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-12-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 IEEE International Electron Devices Meeting (IEDM)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IEDM13553.2020.9371952\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE International Electron Devices Meeting (IEDM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IEDM13553.2020.9371952","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

面对5G时代严峻的功耗和能效挑战,提出了一种基于深度学习和大数据的DPD解决方案。这是一个灵活的系统,适用于各种无线网络架构和各种应用场景。介绍了该系统的体系结构、机制和部署策略,以及其优点。对该方法的可行性进行了初步验证和分析。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Deep Learning Enabled Universal DPD System
Facing the severe power consumption and energy efficiency challenges in 5G era, a novel DPD solution enabled by deep learning and big data is proposed. This is a flexible system suitable for various wireless network architectures and diverse application scenarios. The architecture, mechanism and deployment strategy along with its advantages are presented. Preliminary validation and analyses are also illustrated for the feasibility.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信