{"title":"基于链接分析和协同过滤的多媒体项目推荐","authors":"Davin Wong, Ella Bingham, S. Hyvönen","doi":"10.1609/icwsm.v2i1.18663","DOIUrl":null,"url":null,"abstract":"\n \n \nWe investigate two recommendation approaches suitable for online multimedia sharing services. Our first approach, UserRank, recommends items by global interestingness irrespective of user preferences and is based on the analysis of ownership and evaluation link structure. We also present a personalized interestingness algorithm that combines UserRank with collaborative filtering which enables a single parameter to control the degree of personalization in the recommendations. Our initial results from an informal user study are encouraging. \n \n \n","PeriodicalId":338112,"journal":{"name":"Proceedings of the International AAAI Conference on Web and Social Media","volume":"80 4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Recommendation of Multimedia Items by Link Analysis and Collaborative Filtering\",\"authors\":\"Davin Wong, Ella Bingham, S. Hyvönen\",\"doi\":\"10.1609/icwsm.v2i1.18663\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n \\n \\nWe investigate two recommendation approaches suitable for online multimedia sharing services. Our first approach, UserRank, recommends items by global interestingness irrespective of user preferences and is based on the analysis of ownership and evaluation link structure. We also present a personalized interestingness algorithm that combines UserRank with collaborative filtering which enables a single parameter to control the degree of personalization in the recommendations. Our initial results from an informal user study are encouraging. \\n \\n \\n\",\"PeriodicalId\":338112,\"journal\":{\"name\":\"Proceedings of the International AAAI Conference on Web and Social Media\",\"volume\":\"80 4 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-09-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the International AAAI Conference on Web and Social Media\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1609/icwsm.v2i1.18663\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the International AAAI Conference on Web and Social Media","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1609/icwsm.v2i1.18663","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Recommendation of Multimedia Items by Link Analysis and Collaborative Filtering
We investigate two recommendation approaches suitable for online multimedia sharing services. Our first approach, UserRank, recommends items by global interestingness irrespective of user preferences and is based on the analysis of ownership and evaluation link structure. We also present a personalized interestingness algorithm that combines UserRank with collaborative filtering which enables a single parameter to control the degree of personalization in the recommendations. Our initial results from an informal user study are encouraging.