网络钓鱼分类的潜在语义分析与关键词提取

G. L'Huillier, A. Hevia, R. Weber, Sebastián A. Ríos
{"title":"网络钓鱼分类的潜在语义分析与关键词提取","authors":"G. L'Huillier, A. Hevia, R. Weber, Sebastián A. Ríos","doi":"10.1109/ISI.2010.5484762","DOIUrl":null,"url":null,"abstract":"Phishing email fraud has been considered as one of the main cyber-threats over the last years. Its development has been closely related to social engineering techniques, where different fraud strategies are used to deceit a naïve email user. In this work, a latent semantic analysis and text mining methodology is proposed for the characterisation of such strategies, and further classification using supervised learning algorithms. Results obtained showed that the feature set obtained in this work is competitive against previous phishing feature extraction methodologies, achieving promising results over different benchmark machine learning classification techniques.","PeriodicalId":434501,"journal":{"name":"2010 IEEE International Conference on Intelligence and Security Informatics","volume":"126 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"51","resultStr":"{\"title\":\"Latent semantic analysis and keyword extraction for phishing classification\",\"authors\":\"G. L'Huillier, A. Hevia, R. Weber, Sebastián A. Ríos\",\"doi\":\"10.1109/ISI.2010.5484762\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Phishing email fraud has been considered as one of the main cyber-threats over the last years. Its development has been closely related to social engineering techniques, where different fraud strategies are used to deceit a naïve email user. In this work, a latent semantic analysis and text mining methodology is proposed for the characterisation of such strategies, and further classification using supervised learning algorithms. Results obtained showed that the feature set obtained in this work is competitive against previous phishing feature extraction methodologies, achieving promising results over different benchmark machine learning classification techniques.\",\"PeriodicalId\":434501,\"journal\":{\"name\":\"2010 IEEE International Conference on Intelligence and Security Informatics\",\"volume\":\"126 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-05-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"51\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 IEEE International Conference on Intelligence and Security Informatics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISI.2010.5484762\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 IEEE International Conference on Intelligence and Security Informatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISI.2010.5484762","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 51

摘要

近年来,网络钓鱼电子邮件诈骗被认为是主要的网络威胁之一。它的发展与社会工程技术密切相关,其中使用不同的欺诈策略来欺骗naïve电子邮件用户。在这项工作中,提出了一种潜在语义分析和文本挖掘方法来描述这些策略,并使用监督学习算法进行进一步分类。结果表明,本文所获得的特征集与以前的网络钓鱼特征提取方法相比具有竞争力,在不同的基准机器学习分类技术上取得了令人满意的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Latent semantic analysis and keyword extraction for phishing classification
Phishing email fraud has been considered as one of the main cyber-threats over the last years. Its development has been closely related to social engineering techniques, where different fraud strategies are used to deceit a naïve email user. In this work, a latent semantic analysis and text mining methodology is proposed for the characterisation of such strategies, and further classification using supervised learning algorithms. Results obtained showed that the feature set obtained in this work is competitive against previous phishing feature extraction methodologies, achieving promising results over different benchmark machine learning classification techniques.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信