Ishan Khatri, Toya Acharya, A. Annamalai, M. Chouikha
{"title":"κ-µ衰落信道中信道容量的高阶统计量","authors":"Ishan Khatri, Toya Acharya, A. Annamalai, M. Chouikha","doi":"10.1109/ICUFN49451.2021.9528730","DOIUrl":null,"url":null,"abstract":"The frequency scarcity imposed by the fast-growing need for mobile data service requires promising spectrum aggregation systems. The so-called higher-order statistics (HOS) of the channel capacity (CC) is a suitable metric on the system performance. While prior relevant works have improved our knowledge of HOS characterization on the spectrum aggregation systems, an analytical framework encompassing generalized fading models of interest is not yet available. However, the expressions of HOS are not correct in several previous research works. In this paper, we present novel method by expressing the closed-form expression of CC as the sum of weighted exponential terms and then invoke multinomial expansion to obtain the required coefficients and utilize MGF (Moment Generating Function) based maximum ratio combining (MRC) diversity receivers technique over κ-µ fading distribution to compute higher order moments. Also, we provide correct, simplified and efficient HOS expressions for the asymptotically low and high signal-to-noise regimes and provide a detailed HOS analysis of κ-µ fading channel by obtaining vital statistical measures, such as the amount of dispersion, skewness, and kurtosis by the HOS results. Finally, all derived expressions are validated via the Semi-infinite Gauss Hermite quadrature method.","PeriodicalId":318542,"journal":{"name":"2021 Twelfth International Conference on Ubiquitous and Future Networks (ICUFN)","volume":"43 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-08-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Higher Order Statistics of channel capacity in κ- µ fading channel\",\"authors\":\"Ishan Khatri, Toya Acharya, A. Annamalai, M. Chouikha\",\"doi\":\"10.1109/ICUFN49451.2021.9528730\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The frequency scarcity imposed by the fast-growing need for mobile data service requires promising spectrum aggregation systems. The so-called higher-order statistics (HOS) of the channel capacity (CC) is a suitable metric on the system performance. While prior relevant works have improved our knowledge of HOS characterization on the spectrum aggregation systems, an analytical framework encompassing generalized fading models of interest is not yet available. However, the expressions of HOS are not correct in several previous research works. In this paper, we present novel method by expressing the closed-form expression of CC as the sum of weighted exponential terms and then invoke multinomial expansion to obtain the required coefficients and utilize MGF (Moment Generating Function) based maximum ratio combining (MRC) diversity receivers technique over κ-µ fading distribution to compute higher order moments. Also, we provide correct, simplified and efficient HOS expressions for the asymptotically low and high signal-to-noise regimes and provide a detailed HOS analysis of κ-µ fading channel by obtaining vital statistical measures, such as the amount of dispersion, skewness, and kurtosis by the HOS results. Finally, all derived expressions are validated via the Semi-infinite Gauss Hermite quadrature method.\",\"PeriodicalId\":318542,\"journal\":{\"name\":\"2021 Twelfth International Conference on Ubiquitous and Future Networks (ICUFN)\",\"volume\":\"43 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-08-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 Twelfth International Conference on Ubiquitous and Future Networks (ICUFN)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICUFN49451.2021.9528730\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 Twelfth International Conference on Ubiquitous and Future Networks (ICUFN)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICUFN49451.2021.9528730","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Higher Order Statistics of channel capacity in κ- µ fading channel
The frequency scarcity imposed by the fast-growing need for mobile data service requires promising spectrum aggregation systems. The so-called higher-order statistics (HOS) of the channel capacity (CC) is a suitable metric on the system performance. While prior relevant works have improved our knowledge of HOS characterization on the spectrum aggregation systems, an analytical framework encompassing generalized fading models of interest is not yet available. However, the expressions of HOS are not correct in several previous research works. In this paper, we present novel method by expressing the closed-form expression of CC as the sum of weighted exponential terms and then invoke multinomial expansion to obtain the required coefficients and utilize MGF (Moment Generating Function) based maximum ratio combining (MRC) diversity receivers technique over κ-µ fading distribution to compute higher order moments. Also, we provide correct, simplified and efficient HOS expressions for the asymptotically low and high signal-to-noise regimes and provide a detailed HOS analysis of κ-µ fading channel by obtaining vital statistical measures, such as the amount of dispersion, skewness, and kurtosis by the HOS results. Finally, all derived expressions are validated via the Semi-infinite Gauss Hermite quadrature method.