户外场景群体活动识别

Kyle Stephens, A. Bors
{"title":"户外场景群体活动识别","authors":"Kyle Stephens, A. Bors","doi":"10.1109/AVSS.2016.7738071","DOIUrl":null,"url":null,"abstract":"In this research study, we propose an automatic group activity recognition approach by modelling the interdependencies of group activity features over time. Unlike in simple human activity recognition approaches, the distinguishing characteristics of group activities are often determined by how the movement of people are influenced by one another. We propose to model the group interdependences in both motion and location spaces. These spaces are extended to time-space and time-movement spaces and modelled using Kernel Density Estimation (KDE). Such representations are then fed into a machine learning classifier which identifies the group activity. Unlike other approaches to group activity recognition, we do not rely on the manual annotation of pedestrian tracks from the video sequence.","PeriodicalId":438290,"journal":{"name":"2016 13th IEEE International Conference on Advanced Video and Signal Based Surveillance (AVSS)","volume":"61 1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Group activity recognition on outdoor scenes\",\"authors\":\"Kyle Stephens, A. Bors\",\"doi\":\"10.1109/AVSS.2016.7738071\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this research study, we propose an automatic group activity recognition approach by modelling the interdependencies of group activity features over time. Unlike in simple human activity recognition approaches, the distinguishing characteristics of group activities are often determined by how the movement of people are influenced by one another. We propose to model the group interdependences in both motion and location spaces. These spaces are extended to time-space and time-movement spaces and modelled using Kernel Density Estimation (KDE). Such representations are then fed into a machine learning classifier which identifies the group activity. Unlike other approaches to group activity recognition, we do not rely on the manual annotation of pedestrian tracks from the video sequence.\",\"PeriodicalId\":438290,\"journal\":{\"name\":\"2016 13th IEEE International Conference on Advanced Video and Signal Based Surveillance (AVSS)\",\"volume\":\"61 1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 13th IEEE International Conference on Advanced Video and Signal Based Surveillance (AVSS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/AVSS.2016.7738071\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 13th IEEE International Conference on Advanced Video and Signal Based Surveillance (AVSS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AVSS.2016.7738071","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

在这项研究中,我们提出了一种自动群体活动识别方法,该方法通过建模群体活动特征随时间的相互依赖性。与简单的人类活动识别方法不同,群体活动的显著特征往往取决于人们的运动如何相互影响。我们建议在运动空间和位置空间中对群体相互依赖性进行建模。这些空间被扩展到时间空间和时间运动空间,并使用核密度估计(KDE)建模。然后将这些表示输入机器学习分类器,该分类器识别群体活动。与其他群体活动识别方法不同,我们不依赖于从视频序列中手动注释行人轨迹。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Group activity recognition on outdoor scenes
In this research study, we propose an automatic group activity recognition approach by modelling the interdependencies of group activity features over time. Unlike in simple human activity recognition approaches, the distinguishing characteristics of group activities are often determined by how the movement of people are influenced by one another. We propose to model the group interdependences in both motion and location spaces. These spaces are extended to time-space and time-movement spaces and modelled using Kernel Density Estimation (KDE). Such representations are then fed into a machine learning classifier which identifies the group activity. Unlike other approaches to group activity recognition, we do not rely on the manual annotation of pedestrian tracks from the video sequence.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信