{"title":"利用网络分析和链接预测探索自身免疫性疾病的遗传学基础","authors":"Gregorio Alanis-Lobato, C. Cannistraci, T. Ravasi","doi":"10.1109/MECBME.2014.6783232","DOIUrl":null,"url":null,"abstract":"Ever since the first Genome Wide Association Study (GWAS) was carried out we have seen an important number of discoveries of biological and clinical relevance. However, there are some scientists that consider that these research outcomes and their utility are far from what was expected from this experimental design. We instead believe that the thousands of genetic variants associated with complex disorders by means of GWASs are an extremely valuable source of information that needs to be mined in a different way. Based on this philosophy, we followed a holistic perspective to analyze GWAS data and explored the structural properties of the network representation of one of these datasets with the aim to advance our understanding of the genetic intricacies underlying autoimmune human diseases. The simplicity, computational efficiency and precision of the tools proposed in this paper represent a new means to address GWAS data and contribute to the better exploitation of these rich sources of information.","PeriodicalId":384055,"journal":{"name":"2nd Middle East Conference on Biomedical Engineering","volume":"134 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-04-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Exploring the genetics underlying autoimmune diseases with network analysis and link prediction\",\"authors\":\"Gregorio Alanis-Lobato, C. Cannistraci, T. Ravasi\",\"doi\":\"10.1109/MECBME.2014.6783232\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Ever since the first Genome Wide Association Study (GWAS) was carried out we have seen an important number of discoveries of biological and clinical relevance. However, there are some scientists that consider that these research outcomes and their utility are far from what was expected from this experimental design. We instead believe that the thousands of genetic variants associated with complex disorders by means of GWASs are an extremely valuable source of information that needs to be mined in a different way. Based on this philosophy, we followed a holistic perspective to analyze GWAS data and explored the structural properties of the network representation of one of these datasets with the aim to advance our understanding of the genetic intricacies underlying autoimmune human diseases. The simplicity, computational efficiency and precision of the tools proposed in this paper represent a new means to address GWAS data and contribute to the better exploitation of these rich sources of information.\",\"PeriodicalId\":384055,\"journal\":{\"name\":\"2nd Middle East Conference on Biomedical Engineering\",\"volume\":\"134 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-04-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2nd Middle East Conference on Biomedical Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MECBME.2014.6783232\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2nd Middle East Conference on Biomedical Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MECBME.2014.6783232","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Exploring the genetics underlying autoimmune diseases with network analysis and link prediction
Ever since the first Genome Wide Association Study (GWAS) was carried out we have seen an important number of discoveries of biological and clinical relevance. However, there are some scientists that consider that these research outcomes and their utility are far from what was expected from this experimental design. We instead believe that the thousands of genetic variants associated with complex disorders by means of GWASs are an extremely valuable source of information that needs to be mined in a different way. Based on this philosophy, we followed a holistic perspective to analyze GWAS data and explored the structural properties of the network representation of one of these datasets with the aim to advance our understanding of the genetic intricacies underlying autoimmune human diseases. The simplicity, computational efficiency and precision of the tools proposed in this paper represent a new means to address GWAS data and contribute to the better exploitation of these rich sources of information.