基于深度神经网络的MIMO系统软决策信号检测

Qi Li, Aihua Zhang, Jianjun Li, Bing Ning
{"title":"基于深度神经网络的MIMO系统软决策信号检测","authors":"Qi Li, Aihua Zhang, Jianjun Li, Bing Ning","doi":"10.1109/ICCCS49078.2020.9118425","DOIUrl":null,"url":null,"abstract":"This paper proposes a multiple-input multiple-output (MIMO) soft decision signal detection method for a timevarying communication system. In this algorithm, the training samples, including system channel state information and received data, are input to a deep neural network (DNN), and then we employ cross-entropy loss function and root mean square propagation (RMSProp) descent algorithm to offline train and optimize the parameters of the DNN. Besides, the output layer of the DNN uses the sigmoid function as the activation function, and the negative value of the input value of the sigmoid function is the log-likelihood ratio (LLR). In this way, we can obtain the LLR value via removing the sigmoid function during the online testing without the complicated process of calculating the LLR value. Combining the DNN with the soft decision technology improves signal detection performance. Simulation results show that the proposed algorithm is better than the MMSE algorithm and similar to ML algorithm.","PeriodicalId":105556,"journal":{"name":"2020 5th International Conference on Computer and Communication Systems (ICCCS)","volume":"43 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Soft Decision Signal Detection of MIMO System Based on Deep Neural Network\",\"authors\":\"Qi Li, Aihua Zhang, Jianjun Li, Bing Ning\",\"doi\":\"10.1109/ICCCS49078.2020.9118425\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper proposes a multiple-input multiple-output (MIMO) soft decision signal detection method for a timevarying communication system. In this algorithm, the training samples, including system channel state information and received data, are input to a deep neural network (DNN), and then we employ cross-entropy loss function and root mean square propagation (RMSProp) descent algorithm to offline train and optimize the parameters of the DNN. Besides, the output layer of the DNN uses the sigmoid function as the activation function, and the negative value of the input value of the sigmoid function is the log-likelihood ratio (LLR). In this way, we can obtain the LLR value via removing the sigmoid function during the online testing without the complicated process of calculating the LLR value. Combining the DNN with the soft decision technology improves signal detection performance. Simulation results show that the proposed algorithm is better than the MMSE algorithm and similar to ML algorithm.\",\"PeriodicalId\":105556,\"journal\":{\"name\":\"2020 5th International Conference on Computer and Communication Systems (ICCCS)\",\"volume\":\"43 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 5th International Conference on Computer and Communication Systems (ICCCS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCCS49078.2020.9118425\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 5th International Conference on Computer and Communication Systems (ICCCS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCCS49078.2020.9118425","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

针对时变通信系统,提出了一种多输入多输出(MIMO)软判决信号检测方法。该算法将训练样本(包括系统信道状态信息和接收到的数据)输入到深度神经网络(DNN)中,然后采用交叉熵损失函数和均方根传播(RMSProp)下降算法对深度神经网络进行离线训练和参数优化。此外,DNN的输出层使用sigmoid函数作为激活函数,sigmoid函数输入值的负值为对数似然比(LLR)。这样,我们就可以在在线测试时通过去除sigmoid函数来获得LLR值,而不需要计算LLR值的复杂过程。将深度神经网络与软决策技术相结合,提高了信号检测性能。仿真结果表明,该算法优于MMSE算法,与ML算法相似。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Soft Decision Signal Detection of MIMO System Based on Deep Neural Network
This paper proposes a multiple-input multiple-output (MIMO) soft decision signal detection method for a timevarying communication system. In this algorithm, the training samples, including system channel state information and received data, are input to a deep neural network (DNN), and then we employ cross-entropy loss function and root mean square propagation (RMSProp) descent algorithm to offline train and optimize the parameters of the DNN. Besides, the output layer of the DNN uses the sigmoid function as the activation function, and the negative value of the input value of the sigmoid function is the log-likelihood ratio (LLR). In this way, we can obtain the LLR value via removing the sigmoid function during the online testing without the complicated process of calculating the LLR value. Combining the DNN with the soft decision technology improves signal detection performance. Simulation results show that the proposed algorithm is better than the MMSE algorithm and similar to ML algorithm.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信