带时滞的复值神经网络自适应同步

Haibo Bao, Ju H. Park
{"title":"带时滞的复值神经网络自适应同步","authors":"Haibo Bao, Ju H. Park","doi":"10.1109/ICACI.2016.7449840","DOIUrl":null,"url":null,"abstract":"In this paper, the problem of synchronization for complex-valued neural networks with time delay is investigated. Based on Lyapunov-Krasoviskii functionals and adaptive feedback control method, sufficient criteria are established to ensure the synchronization between the master and the slave systems. Finally, a numerical example is given to demonstrate the effectiveness of the theoretical results.","PeriodicalId":211040,"journal":{"name":"2016 Eighth International Conference on Advanced Computational Intelligence (ICACI)","volume":"28 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Adaptive synchronization of complex-valued neural networks with time delay\",\"authors\":\"Haibo Bao, Ju H. Park\",\"doi\":\"10.1109/ICACI.2016.7449840\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, the problem of synchronization for complex-valued neural networks with time delay is investigated. Based on Lyapunov-Krasoviskii functionals and adaptive feedback control method, sufficient criteria are established to ensure the synchronization between the master and the slave systems. Finally, a numerical example is given to demonstrate the effectiveness of the theoretical results.\",\"PeriodicalId\":211040,\"journal\":{\"name\":\"2016 Eighth International Conference on Advanced Computational Intelligence (ICACI)\",\"volume\":\"28 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 Eighth International Conference on Advanced Computational Intelligence (ICACI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICACI.2016.7449840\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 Eighth International Conference on Advanced Computational Intelligence (ICACI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICACI.2016.7449840","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

研究了具有时滞的复值神经网络的同步问题。基于Lyapunov-Krasoviskii泛函和自适应反馈控制方法,建立了保证主从系统同步的充分准则。最后,通过数值算例验证了理论结果的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Adaptive synchronization of complex-valued neural networks with time delay
In this paper, the problem of synchronization for complex-valued neural networks with time delay is investigated. Based on Lyapunov-Krasoviskii functionals and adaptive feedback control method, sufficient criteria are established to ensure the synchronization between the master and the slave systems. Finally, a numerical example is given to demonstrate the effectiveness of the theoretical results.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信