sba术语:术语的稀疏双语关联

Xinyu Dai, Jinzhu Jia, L. Ghaoui, Bin Yu
{"title":"sba术语:术语的稀疏双语关联","authors":"Xinyu Dai, Jinzhu Jia, L. Ghaoui, Bin Yu","doi":"10.1109/ICSC.2011.25","DOIUrl":null,"url":null,"abstract":"Bilingual semantic term association is very useful in cross-language information retrieval, statistical machine translation, and many other applications in natural language processing. In this paper, we present a method, named SBA-term, which applies sparse linear regression (Lasso, Least Squares with l1 penalty) and L2 rescaling for design matrix to the task of bilingual term association. The approach hinges on formulating the task as a feature selection problem within a classification framework. Our experimental results indicate that our novel proposed method is more efficient than co-occurrence at extracting relevant bilingual terms semantic associations. In addition, our approach connects the vibrant area of sparse machine learning to an important problem of natural language processing.","PeriodicalId":408382,"journal":{"name":"2011 IEEE Fifth International Conference on Semantic Computing","volume":"28 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"SBA-term: Sparse Bilingual Association for Terms\",\"authors\":\"Xinyu Dai, Jinzhu Jia, L. Ghaoui, Bin Yu\",\"doi\":\"10.1109/ICSC.2011.25\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Bilingual semantic term association is very useful in cross-language information retrieval, statistical machine translation, and many other applications in natural language processing. In this paper, we present a method, named SBA-term, which applies sparse linear regression (Lasso, Least Squares with l1 penalty) and L2 rescaling for design matrix to the task of bilingual term association. The approach hinges on formulating the task as a feature selection problem within a classification framework. Our experimental results indicate that our novel proposed method is more efficient than co-occurrence at extracting relevant bilingual terms semantic associations. In addition, our approach connects the vibrant area of sparse machine learning to an important problem of natural language processing.\",\"PeriodicalId\":408382,\"journal\":{\"name\":\"2011 IEEE Fifth International Conference on Semantic Computing\",\"volume\":\"28 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-09-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 IEEE Fifth International Conference on Semantic Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICSC.2011.25\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 IEEE Fifth International Conference on Semantic Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICSC.2011.25","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

摘要

双语语义术语关联在跨语言信息检索、统计机器翻译等自然语言处理领域具有重要的应用价值。本文提出了一种SBA-term方法,该方法将稀疏线性回归(Lasso,带l1惩罚的最小二乘法)和设计矩阵的L2重新缩放应用于双语术语关联任务。该方法取决于将任务表述为分类框架内的特征选择问题。实验结果表明,本文提出的方法在提取相关双语术语语义关联方面比共现方法更有效。此外,我们的方法将稀疏机器学习的活跃领域与自然语言处理的重要问题联系起来。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
SBA-term: Sparse Bilingual Association for Terms
Bilingual semantic term association is very useful in cross-language information retrieval, statistical machine translation, and many other applications in natural language processing. In this paper, we present a method, named SBA-term, which applies sparse linear regression (Lasso, Least Squares with l1 penalty) and L2 rescaling for design matrix to the task of bilingual term association. The approach hinges on formulating the task as a feature selection problem within a classification framework. Our experimental results indicate that our novel proposed method is more efficient than co-occurrence at extracting relevant bilingual terms semantic associations. In addition, our approach connects the vibrant area of sparse machine learning to an important problem of natural language processing.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信