{"title":"图的一阶性质的概率极限值","authors":"J. Spencer, L. Thoma","doi":"10.1090/dimacs/049/23","DOIUrl":null,"url":null,"abstract":"Consider the random graph ${\\cal G}(n,p),$ where $p=p(n)$ is any threshold function satisfying $p(n) = \\Theta(\\ln n / n).$ We give a full characterization of the limit values of probabilities of ${\\cal G}(n,p)$ having a property $\\psi,$ where $\\psi$ is any sentence of the first order theory of graphs.","PeriodicalId":144845,"journal":{"name":"Contemporary Trends in Discrete Mathematics","volume":"152 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1997-07-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"On the limit values of probabilities for the first order properties of graphs\",\"authors\":\"J. Spencer, L. Thoma\",\"doi\":\"10.1090/dimacs/049/23\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Consider the random graph ${\\\\cal G}(n,p),$ where $p=p(n)$ is any threshold function satisfying $p(n) = \\\\Theta(\\\\ln n / n).$ We give a full characterization of the limit values of probabilities of ${\\\\cal G}(n,p)$ having a property $\\\\psi,$ where $\\\\psi$ is any sentence of the first order theory of graphs.\",\"PeriodicalId\":144845,\"journal\":{\"name\":\"Contemporary Trends in Discrete Mathematics\",\"volume\":\"152 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1997-07-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Contemporary Trends in Discrete Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1090/dimacs/049/23\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Contemporary Trends in Discrete Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1090/dimacs/049/23","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7
摘要
考虑随机图${\cal G}(n,p),$,其中$p=p(n)$是满足$p(n) = \Theta(\ln n / n).$的任意阈值函数,我们给出了${\cal G}(n,p)$的概率极限值的完整表征,它具有一个属性$\psi,$,其中$\psi$是图的一阶理论的任意句子。
On the limit values of probabilities for the first order properties of graphs
Consider the random graph ${\cal G}(n,p),$ where $p=p(n)$ is any threshold function satisfying $p(n) = \Theta(\ln n / n).$ We give a full characterization of the limit values of probabilities of ${\cal G}(n,p)$ having a property $\psi,$ where $\psi$ is any sentence of the first order theory of graphs.