Barabási-Albert网络级联故障的模拟:一种元胞自动机方法

Jun Zhang, Xinli Xiong, Yongjie Wang, Jingye Zhang
{"title":"Barabási-Albert网络级联故障的模拟:一种元胞自动机方法","authors":"Jun Zhang, Xinli Xiong, Yongjie Wang, Jingye Zhang","doi":"10.1109/CISCE50729.2020.00052","DOIUrl":null,"url":null,"abstract":"In many complex networks, initial failure of a few modes may cause the cascading failure of the entire network, so we propose a cascading failure model based on cellular automata (CFCA) and build a simulator to characterize the special process. Through simulations, we found that compared with random attacks, malicious attacks are more harmful to the network and the recovery probability of nodes is important to reduce cascading failures.","PeriodicalId":101777,"journal":{"name":"2020 International Conference on Communications, Information System and Computer Engineering (CISCE)","volume":"42 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Simulation for Cascading Failure in Barabási-Albert Network: a Cellular Automata Approach\",\"authors\":\"Jun Zhang, Xinli Xiong, Yongjie Wang, Jingye Zhang\",\"doi\":\"10.1109/CISCE50729.2020.00052\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In many complex networks, initial failure of a few modes may cause the cascading failure of the entire network, so we propose a cascading failure model based on cellular automata (CFCA) and build a simulator to characterize the special process. Through simulations, we found that compared with random attacks, malicious attacks are more harmful to the network and the recovery probability of nodes is important to reduce cascading failures.\",\"PeriodicalId\":101777,\"journal\":{\"name\":\"2020 International Conference on Communications, Information System and Computer Engineering (CISCE)\",\"volume\":\"42 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 International Conference on Communications, Information System and Computer Engineering (CISCE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CISCE50729.2020.00052\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 International Conference on Communications, Information System and Computer Engineering (CISCE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CISCE50729.2020.00052","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在许多复杂网络中,一些模式的初始失效可能导致整个网络的级联失效,因此我们提出了一种基于元胞自动机(CFCA)的级联失效模型,并构建了仿真器来表征这一特殊过程。通过仿真,我们发现与随机攻击相比,恶意攻击对网络的危害更大,节点的恢复概率对于减少级联故障很重要。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Simulation for Cascading Failure in Barabási-Albert Network: a Cellular Automata Approach
In many complex networks, initial failure of a few modes may cause the cascading failure of the entire network, so we propose a cascading failure model based on cellular automata (CFCA) and build a simulator to characterize the special process. Through simulations, we found that compared with random attacks, malicious attacks are more harmful to the network and the recovery probability of nodes is important to reduce cascading failures.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信