{"title":"利用从波源到各种接收器的飞行时间的差异进行三维位置传感","authors":"M. Walworth, Ajay Mahajan","doi":"10.1109/ICAR.1997.620245","DOIUrl":null,"url":null,"abstract":"3D positioning systems typically use actual time-of-flights for triangulation to determine the position of a wave source. Problems, such as inherent time delays and synchronization of the receiver/transmitter pairs are prevalent in these systems. This paper presents a novel formulation for the estimation of the coordinates of an ultrasonic wave source based on the differences in the time-of-flights (TOFs) to various receivers fixed in an inertial frame of reference. A thorough analysis of the formulation and a 1D prototype are presented. Typical applications benefiting from this technology are position sensing systems that may be used in robotics, AGV guidance and navigation, virtual reality, and vibrations.","PeriodicalId":228876,"journal":{"name":"1997 8th International Conference on Advanced Robotics. Proceedings. ICAR'97","volume":"134 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1997-07-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"45","resultStr":"{\"title\":\"3D position sensing using the difference in the time-of-flights from a wave source to various receivers\",\"authors\":\"M. Walworth, Ajay Mahajan\",\"doi\":\"10.1109/ICAR.1997.620245\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"3D positioning systems typically use actual time-of-flights for triangulation to determine the position of a wave source. Problems, such as inherent time delays and synchronization of the receiver/transmitter pairs are prevalent in these systems. This paper presents a novel formulation for the estimation of the coordinates of an ultrasonic wave source based on the differences in the time-of-flights (TOFs) to various receivers fixed in an inertial frame of reference. A thorough analysis of the formulation and a 1D prototype are presented. Typical applications benefiting from this technology are position sensing systems that may be used in robotics, AGV guidance and navigation, virtual reality, and vibrations.\",\"PeriodicalId\":228876,\"journal\":{\"name\":\"1997 8th International Conference on Advanced Robotics. Proceedings. ICAR'97\",\"volume\":\"134 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1997-07-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"45\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"1997 8th International Conference on Advanced Robotics. Proceedings. ICAR'97\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICAR.1997.620245\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"1997 8th International Conference on Advanced Robotics. Proceedings. ICAR'97","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICAR.1997.620245","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
3D position sensing using the difference in the time-of-flights from a wave source to various receivers
3D positioning systems typically use actual time-of-flights for triangulation to determine the position of a wave source. Problems, such as inherent time delays and synchronization of the receiver/transmitter pairs are prevalent in these systems. This paper presents a novel formulation for the estimation of the coordinates of an ultrasonic wave source based on the differences in the time-of-flights (TOFs) to various receivers fixed in an inertial frame of reference. A thorough analysis of the formulation and a 1D prototype are presented. Typical applications benefiting from this technology are position sensing systems that may be used in robotics, AGV guidance and navigation, virtual reality, and vibrations.