JHU Kaldi系统用于阿拉伯语MGB-3 ASR挑战,使用拨号,音频转录对齐和迁移学习

Vimal Manohar, Daniel Povey, S. Khudanpur
{"title":"JHU Kaldi系统用于阿拉伯语MGB-3 ASR挑战,使用拨号,音频转录对齐和迁移学习","authors":"Vimal Manohar, Daniel Povey, S. Khudanpur","doi":"10.1109/ASRU.2017.8268956","DOIUrl":null,"url":null,"abstract":"This paper describes the JHU team's Kaldi system submission to the Arabic MGB-3: The Arabic speech recognition in the Wild Challenge for ASRU-2017. We use a weights transfer approach to adapt a neural network trained on the out-of-domain MGB-2 multi-dialect Arabic TV broadcast corpus to the MGB-3 Egyptian YouTube video corpus. The neural network has a TDNN-LSTM architecture and is trained using lattice-free maximum mutual information (LF-MMI) objective followed by sMBR discriminative training. For supervision, we fuse transcripts from 4 independent transcribers into confusion network training graphs. We also describe our own approach for speaker diarization and audio-transcript alignment. We use this to prepare lightly supervised transcriptions for training the seed system used for adaptation to MGB-3. Our primary submission to the challenge gives a multi-reference WER of 32.78% on the MGB-3 test set.","PeriodicalId":290868,"journal":{"name":"2017 IEEE Automatic Speech Recognition and Understanding Workshop (ASRU)","volume":"100 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"43","resultStr":"{\"title\":\"JHU Kaldi system for Arabic MGB-3 ASR challenge using diarization, audio-transcript alignment and transfer learning\",\"authors\":\"Vimal Manohar, Daniel Povey, S. Khudanpur\",\"doi\":\"10.1109/ASRU.2017.8268956\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper describes the JHU team's Kaldi system submission to the Arabic MGB-3: The Arabic speech recognition in the Wild Challenge for ASRU-2017. We use a weights transfer approach to adapt a neural network trained on the out-of-domain MGB-2 multi-dialect Arabic TV broadcast corpus to the MGB-3 Egyptian YouTube video corpus. The neural network has a TDNN-LSTM architecture and is trained using lattice-free maximum mutual information (LF-MMI) objective followed by sMBR discriminative training. For supervision, we fuse transcripts from 4 independent transcribers into confusion network training graphs. We also describe our own approach for speaker diarization and audio-transcript alignment. We use this to prepare lightly supervised transcriptions for training the seed system used for adaptation to MGB-3. Our primary submission to the challenge gives a multi-reference WER of 32.78% on the MGB-3 test set.\",\"PeriodicalId\":290868,\"journal\":{\"name\":\"2017 IEEE Automatic Speech Recognition and Understanding Workshop (ASRU)\",\"volume\":\"100 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"43\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 IEEE Automatic Speech Recognition and Understanding Workshop (ASRU)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ASRU.2017.8268956\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE Automatic Speech Recognition and Understanding Workshop (ASRU)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ASRU.2017.8268956","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 43

摘要

本文描述了JHU团队向阿拉伯MGB-3提交的Kaldi系统:ASRU-2017野生挑战赛中的阿拉伯语语音识别。我们使用一种权值转移方法,将在域外MGB-2多方言阿拉伯语电视广播语料库上训练的神经网络适应于MGB-3埃及语YouTube视频语料库。该神经网络具有TDNN-LSTM结构,并采用无格最大互信息(LF-MMI)目标和sMBR判别训练进行训练。为了便于监督,我们将4个独立转录者的转录本融合到混淆网络训练图中。我们还描述了我们自己的方法,发言者拨号和音频-transcript对齐。我们用它来准备轻度监督转录训练种子系统用于适应MGB-3。我们对挑战的主要提交在MGB-3测试集中给出了32.78%的多参考WER。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
JHU Kaldi system for Arabic MGB-3 ASR challenge using diarization, audio-transcript alignment and transfer learning
This paper describes the JHU team's Kaldi system submission to the Arabic MGB-3: The Arabic speech recognition in the Wild Challenge for ASRU-2017. We use a weights transfer approach to adapt a neural network trained on the out-of-domain MGB-2 multi-dialect Arabic TV broadcast corpus to the MGB-3 Egyptian YouTube video corpus. The neural network has a TDNN-LSTM architecture and is trained using lattice-free maximum mutual information (LF-MMI) objective followed by sMBR discriminative training. For supervision, we fuse transcripts from 4 independent transcribers into confusion network training graphs. We also describe our own approach for speaker diarization and audio-transcript alignment. We use this to prepare lightly supervised transcriptions for training the seed system used for adaptation to MGB-3. Our primary submission to the challenge gives a multi-reference WER of 32.78% on the MGB-3 test set.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信