不完全信息、特殊波动率与股票收益

T. Berrada, J. Hugonnier
{"title":"不完全信息、特殊波动率与股票收益","authors":"T. Berrada, J. Hugonnier","doi":"10.2139/ssrn.1361485","DOIUrl":null,"url":null,"abstract":"We develop a q-theoretic model of investment under incomplete information that explains the link between idiosyncratic volatility and stock returns. When calibrated to match properties of the US business cycles as well as various firms and industry characteristics, the model generates a negative relation between idiosyncratic volatility and stock returns. We show that conditional on earning surprises, the link is positive after good news and negative after bad news. This result provides new insights on the nature of stock return predictability.","PeriodicalId":206798,"journal":{"name":"Financial Economics 1","volume":"39 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-03-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"34","resultStr":"{\"title\":\"Incomplete Information, Idiosyncratic Volatility and Stock Returns\",\"authors\":\"T. Berrada, J. Hugonnier\",\"doi\":\"10.2139/ssrn.1361485\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We develop a q-theoretic model of investment under incomplete information that explains the link between idiosyncratic volatility and stock returns. When calibrated to match properties of the US business cycles as well as various firms and industry characteristics, the model generates a negative relation between idiosyncratic volatility and stock returns. We show that conditional on earning surprises, the link is positive after good news and negative after bad news. This result provides new insights on the nature of stock return predictability.\",\"PeriodicalId\":206798,\"journal\":{\"name\":\"Financial Economics 1\",\"volume\":\"39 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-03-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"34\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Financial Economics 1\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2139/ssrn.1361485\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Financial Economics 1","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.1361485","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 34

摘要

我们建立了一个不完全信息下的q理论投资模型,解释了特殊波动率与股票收益之间的联系。当经过校准以匹配美国商业周期的属性以及各种公司和行业特征时,该模型在特殊波动率与股票回报之间产生了负相关关系。我们表明,在获得惊喜的条件下,好消息后的联系是正的,坏消息后的联系是负的。这一结果为股票收益可预测性的本质提供了新的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Incomplete Information, Idiosyncratic Volatility and Stock Returns
We develop a q-theoretic model of investment under incomplete information that explains the link between idiosyncratic volatility and stock returns. When calibrated to match properties of the US business cycles as well as various firms and industry characteristics, the model generates a negative relation between idiosyncratic volatility and stock returns. We show that conditional on earning surprises, the link is positive after good news and negative after bad news. This result provides new insights on the nature of stock return predictability.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信