气动阻尼系数预测对与振型共轭的湍流模型的敏感性。

P. Duquesne, B. Mahieux, S. Aubert, P. Ferrand
{"title":"气动阻尼系数预测对与振型共轭的湍流模型的敏感性。","authors":"P. Duquesne, B. Mahieux, S. Aubert, P. Ferrand","doi":"10.29008/ETC2019-016","DOIUrl":null,"url":null,"abstract":"The flutter corresponds to an aerodynamic loading of the structure which amplifies the natural blade vibration. In this paper, a modern design of a high pressure compressor is investigated using a time-linearized RANS solver on 2D blade to blade channel. Two operating points at part speed have been selected, the first with only small supersonic pockets and the second with the interblade channel blocked. Two vibration modes are investigated, the first torsion mode (with a nodal diameter at 2) and the first flexion mode (with a nodal diameter at 2, 4 and 6). Two different two equations turbulence models, k-l and k-ω have been used to resolve the steady state. The unsteady resolution is based on the previous steady state field. Turbulent variables are calculated over time based on a k-ω turbulence model. It was found that for some mode shapes, but not for all, the work exchange between the flow and the blade presents a large disparity depending on the turbulence model used primarily in the steady calculation. This paper proposes a parametric study in terms of rotor velocities, nodal diameters and vibration mode shapes to determine which flow phenomena are sensitive to the turbulence modelling. Main results point to the effect of the shockwave motion, and its interaction with the boundary layer and its separation.","PeriodicalId":268187,"journal":{"name":"13th European Conference on Turbomachinery Fluid Dynamics and Thermodynamics","volume":"26 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Sensitivity of the aerodynamics damping coefficient prediction to the turbulence modelling conjugated with the vibration mode shape.\",\"authors\":\"P. Duquesne, B. Mahieux, S. Aubert, P. Ferrand\",\"doi\":\"10.29008/ETC2019-016\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The flutter corresponds to an aerodynamic loading of the structure which amplifies the natural blade vibration. In this paper, a modern design of a high pressure compressor is investigated using a time-linearized RANS solver on 2D blade to blade channel. Two operating points at part speed have been selected, the first with only small supersonic pockets and the second with the interblade channel blocked. Two vibration modes are investigated, the first torsion mode (with a nodal diameter at 2) and the first flexion mode (with a nodal diameter at 2, 4 and 6). Two different two equations turbulence models, k-l and k-ω have been used to resolve the steady state. The unsteady resolution is based on the previous steady state field. Turbulent variables are calculated over time based on a k-ω turbulence model. It was found that for some mode shapes, but not for all, the work exchange between the flow and the blade presents a large disparity depending on the turbulence model used primarily in the steady calculation. This paper proposes a parametric study in terms of rotor velocities, nodal diameters and vibration mode shapes to determine which flow phenomena are sensitive to the turbulence modelling. Main results point to the effect of the shockwave motion, and its interaction with the boundary layer and its separation.\",\"PeriodicalId\":268187,\"journal\":{\"name\":\"13th European Conference on Turbomachinery Fluid Dynamics and Thermodynamics\",\"volume\":\"26 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-04-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"13th European Conference on Turbomachinery Fluid Dynamics and Thermodynamics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.29008/ETC2019-016\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"13th European Conference on Turbomachinery Fluid Dynamics and Thermodynamics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.29008/ETC2019-016","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

颤振对应于结构的气动载荷,它放大了叶片的固有振动。本文采用时间线性RANS求解器研究了高压压气机的现代设计。在部分速度下选择了两个工作点,第一个只有小的超音速口袋,第二个叶片间通道被阻塞。研究了两种振动模式,第一扭转模式(节点直径为2)和第一弯曲模式(节点直径为2,4和6)。两种不同的两方程湍流模型,k-l和k-ω已被用于解析稳态。非定常分辨率是基于之前的稳态场。根据k-ω湍流模型计算随时间变化的湍流变量。研究发现,对于某些模态型,但并非所有模态型,根据定常计算中主要使用的湍流模型的不同,流动与叶片之间的功交换存在很大的差异。本文提出了转子速度、节点直径和振型的参数化研究,以确定哪些流动现象对湍流模型敏感。主要结果指出了激波运动的影响,以及激波与边界层的相互作用和分离。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Sensitivity of the aerodynamics damping coefficient prediction to the turbulence modelling conjugated with the vibration mode shape.
The flutter corresponds to an aerodynamic loading of the structure which amplifies the natural blade vibration. In this paper, a modern design of a high pressure compressor is investigated using a time-linearized RANS solver on 2D blade to blade channel. Two operating points at part speed have been selected, the first with only small supersonic pockets and the second with the interblade channel blocked. Two vibration modes are investigated, the first torsion mode (with a nodal diameter at 2) and the first flexion mode (with a nodal diameter at 2, 4 and 6). Two different two equations turbulence models, k-l and k-ω have been used to resolve the steady state. The unsteady resolution is based on the previous steady state field. Turbulent variables are calculated over time based on a k-ω turbulence model. It was found that for some mode shapes, but not for all, the work exchange between the flow and the blade presents a large disparity depending on the turbulence model used primarily in the steady calculation. This paper proposes a parametric study in terms of rotor velocities, nodal diameters and vibration mode shapes to determine which flow phenomena are sensitive to the turbulence modelling. Main results point to the effect of the shockwave motion, and its interaction with the boundary layer and its separation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信