基于图神经网络的多时间过程质量预测

Bin Yi, Wenqi Li, Jun Tang, Xiaohua Gao, Bing Zhou, Xiaoli Xu, Peng Qin, Wenqiang Lin
{"title":"基于图神经网络的多时间过程质量预测","authors":"Bin Yi, Wenqi Li, Jun Tang, Xiaohua Gao, Bing Zhou, Xiaoli Xu, Peng Qin, Wenqiang Lin","doi":"10.1145/3589572.3589599","DOIUrl":null,"url":null,"abstract":"For the complex dependencies of production data in time and space, a multi-temporal processing process quality prediction model GLSTM based on graph neural networks is proposed, which uses graph structure data to model the process relationships among production indicators, uses graph neural networks to aggregate spatial information among production indicators, and uses long and short term memory networks to model the complex dependencies of shop floor processing quality indicator sequences in time, and the experimental The results show that the model is able to achieve relative performance improvements of 5.40%, 15.04% and 0.30% compared to time series analysis methods.","PeriodicalId":296325,"journal":{"name":"Proceedings of the 2023 6th International Conference on Machine Vision and Applications","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-03-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multi-temporal process quality prediction based on graph neural network\",\"authors\":\"Bin Yi, Wenqi Li, Jun Tang, Xiaohua Gao, Bing Zhou, Xiaoli Xu, Peng Qin, Wenqiang Lin\",\"doi\":\"10.1145/3589572.3589599\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"For the complex dependencies of production data in time and space, a multi-temporal processing process quality prediction model GLSTM based on graph neural networks is proposed, which uses graph structure data to model the process relationships among production indicators, uses graph neural networks to aggregate spatial information among production indicators, and uses long and short term memory networks to model the complex dependencies of shop floor processing quality indicator sequences in time, and the experimental The results show that the model is able to achieve relative performance improvements of 5.40%, 15.04% and 0.30% compared to time series analysis methods.\",\"PeriodicalId\":296325,\"journal\":{\"name\":\"Proceedings of the 2023 6th International Conference on Machine Vision and Applications\",\"volume\":\"4 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-03-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2023 6th International Conference on Machine Vision and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3589572.3589599\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2023 6th International Conference on Machine Vision and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3589572.3589599","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

针对生产数据在时间和空间上的复杂依赖关系,提出了一种基于图神经网络的多时态加工过程质量预测模型GLSTM,该模型利用图结构数据对生产指标间的过程关系进行建模,利用图神经网络对生产指标间的空间信息进行聚合,并利用长短期记忆网络对车间加工质量指标序列在时间上的复杂依赖关系进行建模,实验结果表明,与时间序列分析方法相比,该模型的相对性能提高了5.40%、15.04%和0.30%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Multi-temporal process quality prediction based on graph neural network
For the complex dependencies of production data in time and space, a multi-temporal processing process quality prediction model GLSTM based on graph neural networks is proposed, which uses graph structure data to model the process relationships among production indicators, uses graph neural networks to aggregate spatial information among production indicators, and uses long and short term memory networks to model the complex dependencies of shop floor processing quality indicator sequences in time, and the experimental The results show that the model is able to achieve relative performance improvements of 5.40%, 15.04% and 0.30% compared to time series analysis methods.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信