Yusuke Kasahara, K. Kitamura, K. Ohnishi, Y. Morikawa, N. Shimojima
{"title":"基于二自由度触觉手术钳机器人的组织穿刺破裂检测","authors":"Yusuke Kasahara, K. Kitamura, K. Ohnishi, Y. Morikawa, N. Shimojima","doi":"10.1109/AMC.2010.5464119","DOIUrl":null,"url":null,"abstract":"This paper proposes a novel method which detects a rupture of organs based on environmental impedance estimation. The proposed method detects the rupture of the organs which is conducive to serious medical accident. The environmental impedance is estimated from position and force responses of a surgery robot by using recursive least-squares algorithm. The rupture behavior is analyzed, and thresholds are settled with respect to each organ to detect the rupture. In the experiment, a two-DOF haptic surgical forceps robot which implements the bilateral control based on robust acceleration control is used. The experimental results show the effectiveness of the proposed method.","PeriodicalId":406900,"journal":{"name":"2010 11th IEEE International Workshop on Advanced Motion Control (AMC)","volume":"118 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":"{\"title\":\"Rupture detection for exenteration of tissues using two-DOF haptic surgical forceps robot\",\"authors\":\"Yusuke Kasahara, K. Kitamura, K. Ohnishi, Y. Morikawa, N. Shimojima\",\"doi\":\"10.1109/AMC.2010.5464119\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper proposes a novel method which detects a rupture of organs based on environmental impedance estimation. The proposed method detects the rupture of the organs which is conducive to serious medical accident. The environmental impedance is estimated from position and force responses of a surgery robot by using recursive least-squares algorithm. The rupture behavior is analyzed, and thresholds are settled with respect to each organ to detect the rupture. In the experiment, a two-DOF haptic surgical forceps robot which implements the bilateral control based on robust acceleration control is used. The experimental results show the effectiveness of the proposed method.\",\"PeriodicalId\":406900,\"journal\":{\"name\":\"2010 11th IEEE International Workshop on Advanced Motion Control (AMC)\",\"volume\":\"118 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-03-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 11th IEEE International Workshop on Advanced Motion Control (AMC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/AMC.2010.5464119\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 11th IEEE International Workshop on Advanced Motion Control (AMC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AMC.2010.5464119","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Rupture detection for exenteration of tissues using two-DOF haptic surgical forceps robot
This paper proposes a novel method which detects a rupture of organs based on environmental impedance estimation. The proposed method detects the rupture of the organs which is conducive to serious medical accident. The environmental impedance is estimated from position and force responses of a surgery robot by using recursive least-squares algorithm. The rupture behavior is analyzed, and thresholds are settled with respect to each organ to detect the rupture. In the experiment, a two-DOF haptic surgical forceps robot which implements the bilateral control based on robust acceleration control is used. The experimental results show the effectiveness of the proposed method.