服务机器人路径规划

Ruining Li
{"title":"服务机器人路径规划","authors":"Ruining Li","doi":"10.1109/WCMEIM56910.2022.10021507","DOIUrl":null,"url":null,"abstract":"Path Planning is an essential aspect of the navigation of mobile service robots. The problem of path planning includes low time efficiency, large memory cost, local optimum, and slow speed in finding the global optimum. This paper reviews three main path planning algorithms and their extensions for the service robots. The first one is Ant Colony Optimization (ACO). The second algorithm is Particle Swarm Optimization (PSO) and some hybrid PSO-related algorithms. The third one is a conventional algorithm named Rapidly Exploring Random Tree (RRT).","PeriodicalId":202270,"journal":{"name":"2022 5th World Conference on Mechanical Engineering and Intelligent Manufacturing (WCMEIM)","volume":"101 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Path Planning for Service Robots\",\"authors\":\"Ruining Li\",\"doi\":\"10.1109/WCMEIM56910.2022.10021507\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Path Planning is an essential aspect of the navigation of mobile service robots. The problem of path planning includes low time efficiency, large memory cost, local optimum, and slow speed in finding the global optimum. This paper reviews three main path planning algorithms and their extensions for the service robots. The first one is Ant Colony Optimization (ACO). The second algorithm is Particle Swarm Optimization (PSO) and some hybrid PSO-related algorithms. The third one is a conventional algorithm named Rapidly Exploring Random Tree (RRT).\",\"PeriodicalId\":202270,\"journal\":{\"name\":\"2022 5th World Conference on Mechanical Engineering and Intelligent Manufacturing (WCMEIM)\",\"volume\":\"101 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-11-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 5th World Conference on Mechanical Engineering and Intelligent Manufacturing (WCMEIM)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/WCMEIM56910.2022.10021507\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 5th World Conference on Mechanical Engineering and Intelligent Manufacturing (WCMEIM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WCMEIM56910.2022.10021507","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

路径规划是移动服务机器人导航的一个重要方面。路径规划存在时间效率低、内存占用大、局部最优、全局最优查找速度慢等问题。本文综述了服务机器人的三种主要路径规划算法及其扩展。首先是蚁群优化算法(Ant Colony Optimization, ACO)。第二种算法是粒子群算法(PSO)及其相关的混合算法。第三种是传统的快速探索随机树(RRT)算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Path Planning for Service Robots
Path Planning is an essential aspect of the navigation of mobile service robots. The problem of path planning includes low time efficiency, large memory cost, local optimum, and slow speed in finding the global optimum. This paper reviews three main path planning algorithms and their extensions for the service robots. The first one is Ant Colony Optimization (ACO). The second algorithm is Particle Swarm Optimization (PSO) and some hybrid PSO-related algorithms. The third one is a conventional algorithm named Rapidly Exploring Random Tree (RRT).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信