{"title":"基于gpu的蒙特卡罗体射线投射","authors":"Christof Rezk Salama","doi":"10.1109/PG.2007.33","DOIUrl":null,"url":null,"abstract":"This paper presents a practical, high-quality, hardware-accelerated volume rendering approach including scattering, environment mapping, and ambient occlusion. We examine the application of stochastic raytracing techniques for volume rendering and provide a fast GPU-based prototype implementation. In addition, we propose a simple phenomenological scattering model, closely related to the Phong illumination model that many artists are familiar with. We demonstrate our technique being capable of producing convincing images, yet flexible enough for digital productions in practice.","PeriodicalId":376934,"journal":{"name":"15th Pacific Conference on Computer Graphics and Applications (PG'07)","volume":"118 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"80","resultStr":"{\"title\":\"GPU-Based Monte-Carlo Volume Raycasting\",\"authors\":\"Christof Rezk Salama\",\"doi\":\"10.1109/PG.2007.33\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a practical, high-quality, hardware-accelerated volume rendering approach including scattering, environment mapping, and ambient occlusion. We examine the application of stochastic raytracing techniques for volume rendering and provide a fast GPU-based prototype implementation. In addition, we propose a simple phenomenological scattering model, closely related to the Phong illumination model that many artists are familiar with. We demonstrate our technique being capable of producing convincing images, yet flexible enough for digital productions in practice.\",\"PeriodicalId\":376934,\"journal\":{\"name\":\"15th Pacific Conference on Computer Graphics and Applications (PG'07)\",\"volume\":\"118 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-10-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"80\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"15th Pacific Conference on Computer Graphics and Applications (PG'07)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/PG.2007.33\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"15th Pacific Conference on Computer Graphics and Applications (PG'07)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PG.2007.33","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
This paper presents a practical, high-quality, hardware-accelerated volume rendering approach including scattering, environment mapping, and ambient occlusion. We examine the application of stochastic raytracing techniques for volume rendering and provide a fast GPU-based prototype implementation. In addition, we propose a simple phenomenological scattering model, closely related to the Phong illumination model that many artists are familiar with. We demonstrate our technique being capable of producing convincing images, yet flexible enough for digital productions in practice.