在集合论估计中引入不确定性的一般框架

P. L. Combettes, M. Benidir, B. Picinbono
{"title":"在集合论估计中引入不确定性的一般框架","authors":"P. L. Combettes, M. Benidir, B. Picinbono","doi":"10.1109/ICASSP.1992.226229","DOIUrl":null,"url":null,"abstract":"In digital signal processing, the two main sources of uncertainty encountered in estimation problems are model uncertainty and noise. In many instances, probabilistic information is available to partially describe these sources of uncertainty. It is shown how such information can be exploited in a broad class of set theoretic estimation problems relevant to digital signal processing. A general framework is developed to construct sets in the solution space by constraining the estimation residual based on the known component of the model to be consistent with those known properties of a so-called uncertainty process consisting of the contribution of the unknown component of the model and the noise. Specific digital signal processing applications are discussed.<<ETX>>","PeriodicalId":163713,"journal":{"name":"[Proceedings] ICASSP-92: 1992 IEEE International Conference on Acoustics, Speech, and Signal Processing","volume":"30 2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1992-03-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"A general framework for the incorporation of uncertainty in set theoretic estimation\",\"authors\":\"P. L. Combettes, M. Benidir, B. Picinbono\",\"doi\":\"10.1109/ICASSP.1992.226229\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In digital signal processing, the two main sources of uncertainty encountered in estimation problems are model uncertainty and noise. In many instances, probabilistic information is available to partially describe these sources of uncertainty. It is shown how such information can be exploited in a broad class of set theoretic estimation problems relevant to digital signal processing. A general framework is developed to construct sets in the solution space by constraining the estimation residual based on the known component of the model to be consistent with those known properties of a so-called uncertainty process consisting of the contribution of the unknown component of the model and the noise. Specific digital signal processing applications are discussed.<<ETX>>\",\"PeriodicalId\":163713,\"journal\":{\"name\":\"[Proceedings] ICASSP-92: 1992 IEEE International Conference on Acoustics, Speech, and Signal Processing\",\"volume\":\"30 2 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1992-03-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"[Proceedings] ICASSP-92: 1992 IEEE International Conference on Acoustics, Speech, and Signal Processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICASSP.1992.226229\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"[Proceedings] ICASSP-92: 1992 IEEE International Conference on Acoustics, Speech, and Signal Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICASSP.1992.226229","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

在数字信号处理中,估计问题中遇到的两个主要不确定性来源是模型不确定性和噪声。在许多情况下,概率信息可以部分描述这些不确定性的来源。它显示了这些信息如何在与数字信号处理相关的广泛的集理论估计问题中被利用。通过约束基于模型的已知分量的估计残差,使其与由模型的未知分量的贡献和噪声组成的所谓不确定性过程的已知属性一致,开发了一个一般框架来在解空间中构造集。讨论了具体的数字信号处理应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A general framework for the incorporation of uncertainty in set theoretic estimation
In digital signal processing, the two main sources of uncertainty encountered in estimation problems are model uncertainty and noise. In many instances, probabilistic information is available to partially describe these sources of uncertainty. It is shown how such information can be exploited in a broad class of set theoretic estimation problems relevant to digital signal processing. A general framework is developed to construct sets in the solution space by constraining the estimation residual based on the known component of the model to be consistent with those known properties of a so-called uncertainty process consisting of the contribution of the unknown component of the model and the noise. Specific digital signal processing applications are discussed.<>
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信