具有不确定运动学和动力学的机器人的近似雅可比控制

C. Cheah, M. Hirano, S. Kawamura, S. Arimoto
{"title":"具有不确定运动学和动力学的机器人的近似雅可比控制","authors":"C. Cheah, M. Hirano, S. Kawamura, S. Arimoto","doi":"10.1109/TRA.2003.814517","DOIUrl":null,"url":null,"abstract":"Most research so far in robot control has assumed either kinematics or Jacobian matrix of the robots from joint space to Cartesian space is known exactly. Unfortunately, no physical parameters can be derived exactly. In addition, when the robot picks up objects of uncertain lengths, orientations, or gripping points, the overall kinematics from the robot's base to the tip of the object becomes uncertain and changes according to different tasks. Consequently, it is unknown whether stability of the robot could be guaranteed in the presence of uncertain kinematics. In order to overcome these drawbacks, in this paper, we propose simple feedback control laws for setpoint control without exact knowledge of kinematics, Jacobian matrix, and dynamics. Lyapunov functions are presented for stability analysis of feedback control problem with uncertain kinematics. We shall show that the end-effector's position converges to a desired position in a finite task space even when the kinematics and Jacobian matrix are uncertain. Experimental results are presented to illustrate the performance of the proposed controllers.","PeriodicalId":161449,"journal":{"name":"IEEE Trans. Robotics Autom.","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2003-08-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"265","resultStr":"{\"title\":\"Approximate Jacobian control for robots with uncertain kinematics and dynamics\",\"authors\":\"C. Cheah, M. Hirano, S. Kawamura, S. Arimoto\",\"doi\":\"10.1109/TRA.2003.814517\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Most research so far in robot control has assumed either kinematics or Jacobian matrix of the robots from joint space to Cartesian space is known exactly. Unfortunately, no physical parameters can be derived exactly. In addition, when the robot picks up objects of uncertain lengths, orientations, or gripping points, the overall kinematics from the robot's base to the tip of the object becomes uncertain and changes according to different tasks. Consequently, it is unknown whether stability of the robot could be guaranteed in the presence of uncertain kinematics. In order to overcome these drawbacks, in this paper, we propose simple feedback control laws for setpoint control without exact knowledge of kinematics, Jacobian matrix, and dynamics. Lyapunov functions are presented for stability analysis of feedback control problem with uncertain kinematics. We shall show that the end-effector's position converges to a desired position in a finite task space even when the kinematics and Jacobian matrix are uncertain. Experimental results are presented to illustrate the performance of the proposed controllers.\",\"PeriodicalId\":161449,\"journal\":{\"name\":\"IEEE Trans. Robotics Autom.\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2003-08-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"265\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Trans. Robotics Autom.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/TRA.2003.814517\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Trans. Robotics Autom.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TRA.2003.814517","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 265

摘要

到目前为止,大多数机器人控制研究都假设机器人从关节空间到笛卡尔空间的运动学或雅可比矩阵是已知的。不幸的是,没有物理参数可以精确地推导出来。此外,当机器人拾取长度、方向或夹持点不确定的物体时,从机器人底部到物体尖端的整体运动学变得不确定,并根据不同的任务而变化。因此,在存在不确定运动学的情况下,机器人的稳定性能否得到保证是未知的。为了克服这些缺点,在本文中,我们提出了简单的反馈控制律,用于定点控制,而不需要精确的运动学,雅可比矩阵和动力学知识。提出了Lyapunov函数用于不确定运动反馈控制问题的稳定性分析。我们将证明,即使在运动学和雅可比矩阵不确定的情况下,末端执行器的位置在有限的任务空间中收敛到期望的位置。实验结果验证了所提控制器的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Approximate Jacobian control for robots with uncertain kinematics and dynamics
Most research so far in robot control has assumed either kinematics or Jacobian matrix of the robots from joint space to Cartesian space is known exactly. Unfortunately, no physical parameters can be derived exactly. In addition, when the robot picks up objects of uncertain lengths, orientations, or gripping points, the overall kinematics from the robot's base to the tip of the object becomes uncertain and changes according to different tasks. Consequently, it is unknown whether stability of the robot could be guaranteed in the presence of uncertain kinematics. In order to overcome these drawbacks, in this paper, we propose simple feedback control laws for setpoint control without exact knowledge of kinematics, Jacobian matrix, and dynamics. Lyapunov functions are presented for stability analysis of feedback control problem with uncertain kinematics. We shall show that the end-effector's position converges to a desired position in a finite task space even when the kinematics and Jacobian matrix are uncertain. Experimental results are presented to illustrate the performance of the proposed controllers.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信