基于顺序二次规划的自动驾驶汽车鲁棒在线路径规划

Yuncheng Jiang, Zenghui Liu, Danjian Qian, Hao Zuo, Weiliang He, Jun Wang
{"title":"基于顺序二次规划的自动驾驶汽车鲁棒在线路径规划","authors":"Yuncheng Jiang, Zenghui Liu, Danjian Qian, Hao Zuo, Weiliang He, Jun Wang","doi":"10.1109/iv51971.2022.9827017","DOIUrl":null,"url":null,"abstract":"In urban driving scenarios, it is a key component for autonomous vehicles to generate a smooth, kinodynamically feasible, and collision-free path. We present an optimization-based path planning method for autonomous vehicles navigating in cluttered environment, e.g., roads partially blocked by static or moving obstacles. Our method first computes a collision-free reference line using quadratic programming(QP), and then using the reference line as initial guess to generate a smooth and feasible path by iterative optimization using sequential quadratic programming(SQP). It works within a fractions of a second, thus permitting efficient regeneration.","PeriodicalId":184622,"journal":{"name":"2022 IEEE Intelligent Vehicles Symposium (IV)","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Robust Online Path Planning for Autonomous Vehicle Using Sequential Quadratic Programming\",\"authors\":\"Yuncheng Jiang, Zenghui Liu, Danjian Qian, Hao Zuo, Weiliang He, Jun Wang\",\"doi\":\"10.1109/iv51971.2022.9827017\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In urban driving scenarios, it is a key component for autonomous vehicles to generate a smooth, kinodynamically feasible, and collision-free path. We present an optimization-based path planning method for autonomous vehicles navigating in cluttered environment, e.g., roads partially blocked by static or moving obstacles. Our method first computes a collision-free reference line using quadratic programming(QP), and then using the reference line as initial guess to generate a smooth and feasible path by iterative optimization using sequential quadratic programming(SQP). It works within a fractions of a second, thus permitting efficient regeneration.\",\"PeriodicalId\":184622,\"journal\":{\"name\":\"2022 IEEE Intelligent Vehicles Symposium (IV)\",\"volume\":\"5 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-06-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE Intelligent Vehicles Symposium (IV)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/iv51971.2022.9827017\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE Intelligent Vehicles Symposium (IV)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/iv51971.2022.9827017","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

在城市驾驶场景中,自动驾驶汽车的关键组成部分是生成平滑、运动动力学可行、无碰撞的路径。我们提出了一种基于优化的路径规划方法,用于自动驾驶汽车在混乱环境中导航,例如被静态或移动障碍物部分阻塞的道路。该方法首先使用二次规划(QP)计算一条无碰撞参考线,然后使用顺序二次规划(SQP)将参考线作为初始猜测,通过迭代优化生成光滑可行的路径。它在几分之一秒内工作,因此允许有效的再生。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Robust Online Path Planning for Autonomous Vehicle Using Sequential Quadratic Programming
In urban driving scenarios, it is a key component for autonomous vehicles to generate a smooth, kinodynamically feasible, and collision-free path. We present an optimization-based path planning method for autonomous vehicles navigating in cluttered environment, e.g., roads partially blocked by static or moving obstacles. Our method first computes a collision-free reference line using quadratic programming(QP), and then using the reference line as initial guess to generate a smooth and feasible path by iterative optimization using sequential quadratic programming(SQP). It works within a fractions of a second, thus permitting efficient regeneration.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信