基于监督学习的患者COVID-19预测框架

Ankit Songara, Pankaj Dhiman, Vipul Sharma, K. Kumar
{"title":"基于监督学习的患者COVID-19预测框架","authors":"Ankit Songara, Pankaj Dhiman, Vipul Sharma, K. Kumar","doi":"10.4018/ijdst.317412","DOIUrl":null,"url":null,"abstract":"The integration of ML and loT can provide insightful details for critical decision making, automated responses, etc. Predicting future trends and detecting anomalies are some of the areas where loT and ML are being used at a rapid rate. Machine learning can help decode the hidden patterns in IoT data. It may complement or replace manual processes in critical areas with automated systems that use statistically derived behavior. In healthcare, wearable sensors used for tracking patient activity have been continuously producing a staggering amount of data. This paper proposes an IoT-based scalable architecture for detecting COVID-19-positive patients and storing and processing such massive amount of data on the cloud. The proposed architecture also employs machine learning algorithms for correct classification of patients. The proposed architecture employs gradient boosting classifier method for early detection of COVID-19 in the patient's body. In order to make the architecture scalable and faster in terms of computational power, the architecture employs cloud computing for data storage.","PeriodicalId":118536,"journal":{"name":"Int. J. Distributed Syst. Technol.","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Supervised Learning-Based Framework for Predicting COVID-19 in Patients\",\"authors\":\"Ankit Songara, Pankaj Dhiman, Vipul Sharma, K. Kumar\",\"doi\":\"10.4018/ijdst.317412\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The integration of ML and loT can provide insightful details for critical decision making, automated responses, etc. Predicting future trends and detecting anomalies are some of the areas where loT and ML are being used at a rapid rate. Machine learning can help decode the hidden patterns in IoT data. It may complement or replace manual processes in critical areas with automated systems that use statistically derived behavior. In healthcare, wearable sensors used for tracking patient activity have been continuously producing a staggering amount of data. This paper proposes an IoT-based scalable architecture for detecting COVID-19-positive patients and storing and processing such massive amount of data on the cloud. The proposed architecture also employs machine learning algorithms for correct classification of patients. The proposed architecture employs gradient boosting classifier method for early detection of COVID-19 in the patient's body. In order to make the architecture scalable and faster in terms of computational power, the architecture employs cloud computing for data storage.\",\"PeriodicalId\":118536,\"journal\":{\"name\":\"Int. J. Distributed Syst. Technol.\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-02-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Int. J. Distributed Syst. Technol.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4018/ijdst.317412\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Distributed Syst. Technol.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4018/ijdst.317412","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

ML和loT的集成可以为关键决策、自动响应等提供深刻的细节。预测未来趋势和检测异常是loT和ML快速应用的一些领域。机器学习可以帮助解码物联网数据中的隐藏模式。它可以用使用统计派生行为的自动化系统补充或取代关键领域的手动过程。在医疗保健领域,用于跟踪患者活动的可穿戴传感器不断产生数量惊人的数据。本文提出了一种基于物联网的可扩展架构,用于检测covid -19阳性患者,并在云端存储和处理大量数据。该架构还采用机器学习算法对患者进行正确分类。该架构采用梯度增强分类器方法对患者体内的COVID-19进行早期检测。为了使体系结构具有可扩展性和更快的计算能力,该体系结构采用云计算进行数据存储。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Supervised Learning-Based Framework for Predicting COVID-19 in Patients
The integration of ML and loT can provide insightful details for critical decision making, automated responses, etc. Predicting future trends and detecting anomalies are some of the areas where loT and ML are being used at a rapid rate. Machine learning can help decode the hidden patterns in IoT data. It may complement or replace manual processes in critical areas with automated systems that use statistically derived behavior. In healthcare, wearable sensors used for tracking patient activity have been continuously producing a staggering amount of data. This paper proposes an IoT-based scalable architecture for detecting COVID-19-positive patients and storing and processing such massive amount of data on the cloud. The proposed architecture also employs machine learning algorithms for correct classification of patients. The proposed architecture employs gradient boosting classifier method for early detection of COVID-19 in the patient's body. In order to make the architecture scalable and faster in terms of computational power, the architecture employs cloud computing for data storage.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信