关于柯西可积性的注解

S. Schneider
{"title":"关于柯西可积性的注解","authors":"S. Schneider","doi":"10.12988/IMF.2014.49162","DOIUrl":null,"url":null,"abstract":"We show that for any bounded function $f:[a,b]\\rightarrow{\\mathbb R}$ and $\\epsilon>0$ there is a partition $P$ of $[a,b]$ with respect to which the Riemann sum of $f$ using right endpoints is within $\\epsilon$ of the upper Darboux sum of $f$. This leads to an elementary proof of the theorem of Gillespie \\cite{G} showing that Cauchy's and Riemann's definitions of integrability coincide.","PeriodicalId":429168,"journal":{"name":"arXiv: History and Overview","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A note on Cauchy integrability\",\"authors\":\"S. Schneider\",\"doi\":\"10.12988/IMF.2014.49162\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We show that for any bounded function $f:[a,b]\\\\rightarrow{\\\\mathbb R}$ and $\\\\epsilon>0$ there is a partition $P$ of $[a,b]$ with respect to which the Riemann sum of $f$ using right endpoints is within $\\\\epsilon$ of the upper Darboux sum of $f$. This leads to an elementary proof of the theorem of Gillespie \\\\cite{G} showing that Cauchy's and Riemann's definitions of integrability coincide.\",\"PeriodicalId\":429168,\"journal\":{\"name\":\"arXiv: History and Overview\",\"volume\":\"14 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-09-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv: History and Overview\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.12988/IMF.2014.49162\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: History and Overview","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.12988/IMF.2014.49162","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们表明,对于任何有界函数$f:[a,b]\rightarrow{\mathbb R}$和$\epsilon>0$,都有一个$[a,b]$的分区$P$,对于该分区,使用右端点的$f$的黎曼和在$f$的上达布和的$\epsilon$范围内。这导致了吉莱斯皮定理\cite{G}的初等证明,表明柯西和黎曼对可积性的定义是一致的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A note on Cauchy integrability
We show that for any bounded function $f:[a,b]\rightarrow{\mathbb R}$ and $\epsilon>0$ there is a partition $P$ of $[a,b]$ with respect to which the Riemann sum of $f$ using right endpoints is within $\epsilon$ of the upper Darboux sum of $f$. This leads to an elementary proof of the theorem of Gillespie \cite{G} showing that Cauchy's and Riemann's definitions of integrability coincide.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信