利用OpenACC指令并行化音调生物声信号去噪算法

J. Castro, E. Meneses
{"title":"利用OpenACC指令并行化音调生物声信号去噪算法","authors":"J. Castro, E. Meneses","doi":"10.1109/IWOBI.2018.8464129","DOIUrl":null,"url":null,"abstract":"Automatic segmentation and classification methods for bioacoustic signals enable real-time monitoring, population estimation, as well as other important tasks for the conservation, management, and study of wildlife. These methods normally require a filter or a denoising strategy to enhance relevant information in the input signal and avoid false positive detections. This denoising stage is usually the performance bottleneck of such methods. In this paper, we parallelize a denoising algorithm for tonal bioacoustic signals using mainly OpenACC directives. The implemented program was executed in both multicore and GPU architectures. The proposed parallelized algorithm achieves a higher speedup on GPU than CPU, leading to a 10.67 speedup compared to the original sequential algorithm in C++.","PeriodicalId":127078,"journal":{"name":"2018 IEEE International Work Conference on Bioinspired Intelligence (IWOBI)","volume":"79 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Parallelization of a Denoising Algorithm for Tonal Bioacoustic Signals Using OpenACC Directives\",\"authors\":\"J. Castro, E. Meneses\",\"doi\":\"10.1109/IWOBI.2018.8464129\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Automatic segmentation and classification methods for bioacoustic signals enable real-time monitoring, population estimation, as well as other important tasks for the conservation, management, and study of wildlife. These methods normally require a filter or a denoising strategy to enhance relevant information in the input signal and avoid false positive detections. This denoising stage is usually the performance bottleneck of such methods. In this paper, we parallelize a denoising algorithm for tonal bioacoustic signals using mainly OpenACC directives. The implemented program was executed in both multicore and GPU architectures. The proposed parallelized algorithm achieves a higher speedup on GPU than CPU, leading to a 10.67 speedup compared to the original sequential algorithm in C++.\",\"PeriodicalId\":127078,\"journal\":{\"name\":\"2018 IEEE International Work Conference on Bioinspired Intelligence (IWOBI)\",\"volume\":\"79 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE International Work Conference on Bioinspired Intelligence (IWOBI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IWOBI.2018.8464129\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE International Work Conference on Bioinspired Intelligence (IWOBI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IWOBI.2018.8464129","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

生物声信号的自动分割和分类方法为野生动物的保护、管理和研究提供了实时监测、种群估计和其他重要任务。这些方法通常需要一个滤波器或去噪策略来增强输入信号中的相关信息,避免误报检测。这一去噪阶段通常是这类方法的性能瓶颈。在本文中,我们主要使用OpenACC指令并行化音调生物声学信号的去噪算法。所实现的程序在多核和GPU架构下均可执行。本文提出的并行化算法在GPU上比在CPU上实现了更高的加速,与原来的顺序算法相比,在c++中实现了10.67的加速。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Parallelization of a Denoising Algorithm for Tonal Bioacoustic Signals Using OpenACC Directives
Automatic segmentation and classification methods for bioacoustic signals enable real-time monitoring, population estimation, as well as other important tasks for the conservation, management, and study of wildlife. These methods normally require a filter or a denoising strategy to enhance relevant information in the input signal and avoid false positive detections. This denoising stage is usually the performance bottleneck of such methods. In this paper, we parallelize a denoising algorithm for tonal bioacoustic signals using mainly OpenACC directives. The implemented program was executed in both multicore and GPU architectures. The proposed parallelized algorithm achieves a higher speedup on GPU than CPU, leading to a 10.67 speedup compared to the original sequential algorithm in C++.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信