枚举实代数几何

F. Sottile
{"title":"枚举实代数几何","authors":"F. Sottile","doi":"10.1090/dimacs/060/11","DOIUrl":null,"url":null,"abstract":"Two well-defined classes of structured polynomial systems have been studied from this point of view—sparse systems, where the structure is encoded by the monomials in the polynomials fi—and geometric systems, where the structure comes from geometry. This second class consists of polynomial formulations of enumerative geometric problems, and in this case Question 1.1 is the motivating question of enumerative real algebraic geometry, the subject of this survey. Treating both sparse polynomial systems and enumerative geometry together in the context of Question 1.1 gives useful insight.","PeriodicalId":363327,"journal":{"name":"Algorithmic and Quantitative Aspects of Real Algebraic Geometry in Mathematics and Computer Science","volume":"189 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2001-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"39","resultStr":"{\"title\":\"Enumerative Real Algebraic Geometry\",\"authors\":\"F. Sottile\",\"doi\":\"10.1090/dimacs/060/11\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Two well-defined classes of structured polynomial systems have been studied from this point of view—sparse systems, where the structure is encoded by the monomials in the polynomials fi—and geometric systems, where the structure comes from geometry. This second class consists of polynomial formulations of enumerative geometric problems, and in this case Question 1.1 is the motivating question of enumerative real algebraic geometry, the subject of this survey. Treating both sparse polynomial systems and enumerative geometry together in the context of Question 1.1 gives useful insight.\",\"PeriodicalId\":363327,\"journal\":{\"name\":\"Algorithmic and Quantitative Aspects of Real Algebraic Geometry in Mathematics and Computer Science\",\"volume\":\"189 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2001-07-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"39\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Algorithmic and Quantitative Aspects of Real Algebraic Geometry in Mathematics and Computer Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1090/dimacs/060/11\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Algorithmic and Quantitative Aspects of Real Algebraic Geometry in Mathematics and Computer Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1090/dimacs/060/11","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 39

摘要

从这个角度研究了两类定义良好的结构化多项式系统:稀疏系统,其结构由多项式i中的单项式编码;几何系统,其结构来自几何。第二类由枚举几何问题的多项式公式组成,在这种情况下,问题1.1是枚举实代数几何的激励问题,也是本次调查的主题。在问题1.1的背景下,将稀疏多项式系统和枚举几何一起处理可以提供有用的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Enumerative Real Algebraic Geometry
Two well-defined classes of structured polynomial systems have been studied from this point of view—sparse systems, where the structure is encoded by the monomials in the polynomials fi—and geometric systems, where the structure comes from geometry. This second class consists of polynomial formulations of enumerative geometric problems, and in this case Question 1.1 is the motivating question of enumerative real algebraic geometry, the subject of this survey. Treating both sparse polynomial systems and enumerative geometry together in the context of Question 1.1 gives useful insight.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信