三维点云的自适应阈值实例分割网络

Yu Sun, Zhicheng Wang, Jingjing Fei, Ling Chen, Gang Wei
{"title":"三维点云的自适应阈值实例分割网络","authors":"Yu Sun, Zhicheng Wang, Jingjing Fei, Ling Chen, Gang Wei","doi":"10.1117/12.2541582","DOIUrl":null,"url":null,"abstract":"We introduce an adaptive threshold instance segmentation network in point cloud based on similarity group proposal network(SGPN), named adaptive threshold similarity group proposal network(ATSGPN). SGPN learns the feature of point cloud to process similarity matrix and clusters. In our experiments, we find that we cannot always get the proper threshold by heuristic method to divide the points although the similarity matrix is good enough. Based on this idea, we introduce the Threshold Map to learn segmentation threshold. We also improve the feature extraction using edge convolution(EdgeConv). The point cloud first passes EdgeConv to extract features and learns the similarity matrix in feature space. The semantic label of each point and the segmentation threshold can help to generate groups and then calculates confidence to evaluate the group quality and backpropagation. ATSGPN has higher accuracy on Stanford Large- Scale 3D Indoor Spaces Dataset (S3SID) and fewer steps than SGPN, and there are some experiments can be shown in the paper for its good performance.","PeriodicalId":384253,"journal":{"name":"International Symposium on Multispectral Image Processing and Pattern Recognition","volume":"36 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"ATSGPN: adaptive threshold instance segmentation network in 3D point cloud\",\"authors\":\"Yu Sun, Zhicheng Wang, Jingjing Fei, Ling Chen, Gang Wei\",\"doi\":\"10.1117/12.2541582\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We introduce an adaptive threshold instance segmentation network in point cloud based on similarity group proposal network(SGPN), named adaptive threshold similarity group proposal network(ATSGPN). SGPN learns the feature of point cloud to process similarity matrix and clusters. In our experiments, we find that we cannot always get the proper threshold by heuristic method to divide the points although the similarity matrix is good enough. Based on this idea, we introduce the Threshold Map to learn segmentation threshold. We also improve the feature extraction using edge convolution(EdgeConv). The point cloud first passes EdgeConv to extract features and learns the similarity matrix in feature space. The semantic label of each point and the segmentation threshold can help to generate groups and then calculates confidence to evaluate the group quality and backpropagation. ATSGPN has higher accuracy on Stanford Large- Scale 3D Indoor Spaces Dataset (S3SID) and fewer steps than SGPN, and there are some experiments can be shown in the paper for its good performance.\",\"PeriodicalId\":384253,\"journal\":{\"name\":\"International Symposium on Multispectral Image Processing and Pattern Recognition\",\"volume\":\"36 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-02-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Symposium on Multispectral Image Processing and Pattern Recognition\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1117/12.2541582\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Symposium on Multispectral Image Processing and Pattern Recognition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.2541582","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

提出了一种基于相似组建议网络(SGPN)的点云自适应阈值实例分割网络,命名为自适应阈值相似组建议网络(ATSGPN)。SGPN学习点云的特征来处理相似矩阵和聚类。在实验中,我们发现尽管相似矩阵足够好,但启发式分点方法并不总是能得到合适的阈值。在此基础上,我们引入阈值映射来学习分割阈值。我们还使用边缘卷积(EdgeConv)改进了特征提取。点云首先通过EdgeConv提取特征,并学习特征空间中的相似矩阵。每个点的语义标签和分割阈值可以帮助生成组,然后计算置信度来评估组的质量和反向传播。与SGPN相比,ATSGPN在Stanford Large Scale 3D Indoor Spaces Dataset (S3SID)上具有更高的精度和更少的步长,并通过一些实验证明了其良好的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
ATSGPN: adaptive threshold instance segmentation network in 3D point cloud
We introduce an adaptive threshold instance segmentation network in point cloud based on similarity group proposal network(SGPN), named adaptive threshold similarity group proposal network(ATSGPN). SGPN learns the feature of point cloud to process similarity matrix and clusters. In our experiments, we find that we cannot always get the proper threshold by heuristic method to divide the points although the similarity matrix is good enough. Based on this idea, we introduce the Threshold Map to learn segmentation threshold. We also improve the feature extraction using edge convolution(EdgeConv). The point cloud first passes EdgeConv to extract features and learns the similarity matrix in feature space. The semantic label of each point and the segmentation threshold can help to generate groups and then calculates confidence to evaluate the group quality and backpropagation. ATSGPN has higher accuracy on Stanford Large- Scale 3D Indoor Spaces Dataset (S3SID) and fewer steps than SGPN, and there are some experiments can be shown in the paper for its good performance.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信