阈值函数训练神经网络的灵敏度

Sang-Hoon Oh, Youngjik Lee
{"title":"阈值函数训练神经网络的灵敏度","authors":"Sang-Hoon Oh, Youngjik Lee","doi":"10.1109/ICNN.1994.374316","DOIUrl":null,"url":null,"abstract":"In this paper, we derive the sensitivity of single hidden-layer networks with threshold functions, called \"Madaline\", as a function of the trained weights, the input pattern, and the variance of weight perturbation or the bit error probability of the binary input pattern. The derived results are verified with a simulation of the Madaline recognizing handwritten digits. Our result show that the sensitivity in a trained network is far different from that of networks with random weights.<<ETX>>","PeriodicalId":209128,"journal":{"name":"Proceedings of 1994 IEEE International Conference on Neural Networks (ICNN'94)","volume":"131 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1994-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Sensitivity of trained neural networks with threshold functions\",\"authors\":\"Sang-Hoon Oh, Youngjik Lee\",\"doi\":\"10.1109/ICNN.1994.374316\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we derive the sensitivity of single hidden-layer networks with threshold functions, called \\\"Madaline\\\", as a function of the trained weights, the input pattern, and the variance of weight perturbation or the bit error probability of the binary input pattern. The derived results are verified with a simulation of the Madaline recognizing handwritten digits. Our result show that the sensitivity in a trained network is far different from that of networks with random weights.<<ETX>>\",\"PeriodicalId\":209128,\"journal\":{\"name\":\"Proceedings of 1994 IEEE International Conference on Neural Networks (ICNN'94)\",\"volume\":\"131 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1994-06-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of 1994 IEEE International Conference on Neural Networks (ICNN'94)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICNN.1994.374316\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of 1994 IEEE International Conference on Neural Networks (ICNN'94)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICNN.1994.374316","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文推导了具有阈值函数(Madaline)的单隐层网络的灵敏度是训练权值、输入模式和权值扰动方差或二进制输入模式的误码概率的函数。通过Madaline识别手写体数字的仿真验证了所得结果。我们的结果表明,训练后的网络的灵敏度与随机权值的网络有很大的不同
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Sensitivity of trained neural networks with threshold functions
In this paper, we derive the sensitivity of single hidden-layer networks with threshold functions, called "Madaline", as a function of the trained weights, the input pattern, and the variance of weight perturbation or the bit error probability of the binary input pattern. The derived results are verified with a simulation of the Madaline recognizing handwritten digits. Our result show that the sensitivity in a trained network is far different from that of networks with random weights.<>
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信