银行客户细分的聚类算法

D. Zakrzewska, J. Murlewski
{"title":"银行客户细分的聚类算法","authors":"D. Zakrzewska, J. Murlewski","doi":"10.1109/ISDA.2005.33","DOIUrl":null,"url":null,"abstract":"Market segmentation is one of the most important area of knowledge-based marketing. In banks, it is really a challenging task as data bases are large and multidimensional. In the paper we consider cluster analysis, which is the methodology, the most often applied in this area. We compare clustering algorithms in cases of high dimensionality with noise. We discuss using three algorithms: density based DBSCAN, k-means and based on it two-phase clustering process. We compare algorithms concerning their effectiveness and scalability. Some experiments with exemplary bank data sets are presented.","PeriodicalId":345842,"journal":{"name":"5th International Conference on Intelligent Systems Design and Applications (ISDA'05)","volume":"55 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2005-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"56","resultStr":"{\"title\":\"Clustering algorithms for bank customer segmentation\",\"authors\":\"D. Zakrzewska, J. Murlewski\",\"doi\":\"10.1109/ISDA.2005.33\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Market segmentation is one of the most important area of knowledge-based marketing. In banks, it is really a challenging task as data bases are large and multidimensional. In the paper we consider cluster analysis, which is the methodology, the most often applied in this area. We compare clustering algorithms in cases of high dimensionality with noise. We discuss using three algorithms: density based DBSCAN, k-means and based on it two-phase clustering process. We compare algorithms concerning their effectiveness and scalability. Some experiments with exemplary bank data sets are presented.\",\"PeriodicalId\":345842,\"journal\":{\"name\":\"5th International Conference on Intelligent Systems Design and Applications (ISDA'05)\",\"volume\":\"55 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2005-09-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"56\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"5th International Conference on Intelligent Systems Design and Applications (ISDA'05)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISDA.2005.33\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"5th International Conference on Intelligent Systems Design and Applications (ISDA'05)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISDA.2005.33","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 56

摘要

市场细分是知识营销的一个重要领域。在银行中,这确实是一项具有挑战性的任务,因为数据库庞大且多维。在本文中,我们考虑聚类分析,这是最常用的方法,在这一领域。我们比较了高维和噪声情况下的聚类算法。我们讨论了使用三种算法:基于密度的DBSCAN, k-means和基于它的两阶段聚类过程。我们比较了算法的有效性和可扩展性。给出了一些典型银行数据集的实验。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Clustering algorithms for bank customer segmentation
Market segmentation is one of the most important area of knowledge-based marketing. In banks, it is really a challenging task as data bases are large and multidimensional. In the paper we consider cluster analysis, which is the methodology, the most often applied in this area. We compare clustering algorithms in cases of high dimensionality with noise. We discuss using three algorithms: density based DBSCAN, k-means and based on it two-phase clustering process. We compare algorithms concerning their effectiveness and scalability. Some experiments with exemplary bank data sets are presented.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信