基于k均值聚类的电力大数据误差标定方法研究

Wei Xing, Botao Wu, Mingyuan Liang, Yue Li, Lin Cheng
{"title":"基于k均值聚类的电力大数据误差标定方法研究","authors":"Wei Xing, Botao Wu, Mingyuan Liang, Yue Li, Lin Cheng","doi":"10.1109/IFEEA57288.2022.10037989","DOIUrl":null,"url":null,"abstract":"For heterogeneous data with large volume, the current error checking method has lower effective error correction and longer checking processing time. In view of the above problems, this paper studies the power big data error calibration method based on K-Means clustering. After processing the heterogeneous and heterogeneous power big data, the PSO algorithm is used to improve the k-means clustering process. After extracting the data error features in the sparse coding network, the improved k-means algorithm is used to achieve error checking. In the experimental study, the effective calibration ratio of the k-means-based calibration method is higher than 65%, and the calibration time is greatly reduced. When the method is applied to actual power big data management, the influence of errors on data analysis can be reduced to the greatest extent, and the data credibility can be improved.","PeriodicalId":304779,"journal":{"name":"2022 9th International Forum on Electrical Engineering and Automation (IFEEA)","volume":"101 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Research on Error Calibration Method for Power Big Data Based on K-Means Clustering\",\"authors\":\"Wei Xing, Botao Wu, Mingyuan Liang, Yue Li, Lin Cheng\",\"doi\":\"10.1109/IFEEA57288.2022.10037989\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"For heterogeneous data with large volume, the current error checking method has lower effective error correction and longer checking processing time. In view of the above problems, this paper studies the power big data error calibration method based on K-Means clustering. After processing the heterogeneous and heterogeneous power big data, the PSO algorithm is used to improve the k-means clustering process. After extracting the data error features in the sparse coding network, the improved k-means algorithm is used to achieve error checking. In the experimental study, the effective calibration ratio of the k-means-based calibration method is higher than 65%, and the calibration time is greatly reduced. When the method is applied to actual power big data management, the influence of errors on data analysis can be reduced to the greatest extent, and the data credibility can be improved.\",\"PeriodicalId\":304779,\"journal\":{\"name\":\"2022 9th International Forum on Electrical Engineering and Automation (IFEEA)\",\"volume\":\"101 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-11-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 9th International Forum on Electrical Engineering and Automation (IFEEA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IFEEA57288.2022.10037989\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 9th International Forum on Electrical Engineering and Automation (IFEEA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IFEEA57288.2022.10037989","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

对于大容量的异构数据,目前的纠错方法纠错效率较低,纠错处理时间较长。针对上述问题,本文研究了基于k均值聚类的功率大数据误差标定方法。在对异构和异构电力大数据进行处理后,采用粒子群算法改进k-means聚类过程。在稀疏编码网络中提取数据误差特征后,采用改进的k-means算法实现误差检测。在实验研究中,基于k均值的校准方法的有效校准率高于65%,并且大大减少了校准时间。当该方法应用于实际电力大数据管理时,可以最大程度地减少误差对数据分析的影响,提高数据的可信度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Research on Error Calibration Method for Power Big Data Based on K-Means Clustering
For heterogeneous data with large volume, the current error checking method has lower effective error correction and longer checking processing time. In view of the above problems, this paper studies the power big data error calibration method based on K-Means clustering. After processing the heterogeneous and heterogeneous power big data, the PSO algorithm is used to improve the k-means clustering process. After extracting the data error features in the sparse coding network, the improved k-means algorithm is used to achieve error checking. In the experimental study, the effective calibration ratio of the k-means-based calibration method is higher than 65%, and the calibration time is greatly reduced. When the method is applied to actual power big data management, the influence of errors on data analysis can be reduced to the greatest extent, and the data credibility can be improved.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信