{"title":"海报:基于内容的Pub/Sub学习索引","authors":"Cheng Lin, Qinpei Zhao, Weixiong Rao","doi":"10.1109/ICDCS51616.2021.00124","DOIUrl":null,"url":null,"abstract":"Content-based Pub/Sub paradigm has been widely used in many distributed applications and existing approaches suffer from high redundancy subscription index structure and low matching efficiency. To tackle this issue, in this paper, we propose a learning framework to guide the construction of an efficient in-memory subscription index, namely PMIndex, via a multi-task learning framework. The key of PMIndex is to merge redundant subscriptions into an optimal number of partitions for less memory cost and faster matching time. Our initial experimental result on a synthetic dataset demonstrates that PMindex outperforms two state-of-the-arts by faster matching time and less memory cost.","PeriodicalId":222376,"journal":{"name":"2021 IEEE 41st International Conference on Distributed Computing Systems (ICDCS)","volume":"59 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Poster: Learning Index on Content-based Pub/Sub\",\"authors\":\"Cheng Lin, Qinpei Zhao, Weixiong Rao\",\"doi\":\"10.1109/ICDCS51616.2021.00124\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Content-based Pub/Sub paradigm has been widely used in many distributed applications and existing approaches suffer from high redundancy subscription index structure and low matching efficiency. To tackle this issue, in this paper, we propose a learning framework to guide the construction of an efficient in-memory subscription index, namely PMIndex, via a multi-task learning framework. The key of PMIndex is to merge redundant subscriptions into an optimal number of partitions for less memory cost and faster matching time. Our initial experimental result on a synthetic dataset demonstrates that PMindex outperforms two state-of-the-arts by faster matching time and less memory cost.\",\"PeriodicalId\":222376,\"journal\":{\"name\":\"2021 IEEE 41st International Conference on Distributed Computing Systems (ICDCS)\",\"volume\":\"59 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE 41st International Conference on Distributed Computing Systems (ICDCS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICDCS51616.2021.00124\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE 41st International Conference on Distributed Computing Systems (ICDCS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDCS51616.2021.00124","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Content-based Pub/Sub paradigm has been widely used in many distributed applications and existing approaches suffer from high redundancy subscription index structure and low matching efficiency. To tackle this issue, in this paper, we propose a learning framework to guide the construction of an efficient in-memory subscription index, namely PMIndex, via a multi-task learning framework. The key of PMIndex is to merge redundant subscriptions into an optimal number of partitions for less memory cost and faster matching time. Our initial experimental result on a synthetic dataset demonstrates that PMindex outperforms two state-of-the-arts by faster matching time and less memory cost.