内存高效低秩非线性子空间跟踪

Fatemeh Sheikholeslami, Dimitris Berberidis, G. Giannakis
{"title":"内存高效低秩非线性子空间跟踪","authors":"Fatemeh Sheikholeslami, Dimitris Berberidis, G. Giannakis","doi":"10.1109/CAMSAP.2017.8313099","DOIUrl":null,"url":null,"abstract":"The task of low-rank subspace tracking is of paramount importance for feature extraction over streaming data. Considering the broad range of applications in which the data fail to adhere to a linear model, the present work proposes a nonlinear subspace tracking algorithm. The proposed algorithm can effectively learn and track an evolving non-linear subspace in an online fashion. The notion of non-linearity is accommodated via exploitation of kernel-induced mappings, whose computational as well as memory requirements, if untreated, will impose scalability issues in large datasets. This issue is addressed by imposing a predefined affordable budget on the number of data vectors to be stored, preventing computational and memory growth of the algorithm, while enabling the tracking of possibly evolving subspaces. Numerical tests corroborate the effectiveness of the proposed algorithm on synthetic as well as real datasets.","PeriodicalId":315977,"journal":{"name":"2017 IEEE 7th International Workshop on Computational Advances in Multi-Sensor Adaptive Processing (CAMSAP)","volume":"74 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Memory efficient low-rank non-linear subspace tracking\",\"authors\":\"Fatemeh Sheikholeslami, Dimitris Berberidis, G. Giannakis\",\"doi\":\"10.1109/CAMSAP.2017.8313099\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The task of low-rank subspace tracking is of paramount importance for feature extraction over streaming data. Considering the broad range of applications in which the data fail to adhere to a linear model, the present work proposes a nonlinear subspace tracking algorithm. The proposed algorithm can effectively learn and track an evolving non-linear subspace in an online fashion. The notion of non-linearity is accommodated via exploitation of kernel-induced mappings, whose computational as well as memory requirements, if untreated, will impose scalability issues in large datasets. This issue is addressed by imposing a predefined affordable budget on the number of data vectors to be stored, preventing computational and memory growth of the algorithm, while enabling the tracking of possibly evolving subspaces. Numerical tests corroborate the effectiveness of the proposed algorithm on synthetic as well as real datasets.\",\"PeriodicalId\":315977,\"journal\":{\"name\":\"2017 IEEE 7th International Workshop on Computational Advances in Multi-Sensor Adaptive Processing (CAMSAP)\",\"volume\":\"74 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 IEEE 7th International Workshop on Computational Advances in Multi-Sensor Adaptive Processing (CAMSAP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CAMSAP.2017.8313099\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE 7th International Workshop on Computational Advances in Multi-Sensor Adaptive Processing (CAMSAP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CAMSAP.2017.8313099","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

低秩子空间跟踪是流数据特征提取的重要任务。考虑到数据不符合线性模型的广泛应用,本工作提出了一种非线性子空间跟踪算法。该算法能够在线有效地学习和跟踪不断变化的非线性子空间。非线性的概念是通过利用内核诱发的映射来适应的,如果不加以处理,其计算和内存需求将在大型数据集中施加可伸缩性问题。这个问题是通过对要存储的数据向量的数量施加一个预定义的可负担的预算来解决的,防止算法的计算和内存增长,同时能够跟踪可能进化的子空间。数值实验验证了该算法在合成数据集和实际数据集上的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Memory efficient low-rank non-linear subspace tracking
The task of low-rank subspace tracking is of paramount importance for feature extraction over streaming data. Considering the broad range of applications in which the data fail to adhere to a linear model, the present work proposes a nonlinear subspace tracking algorithm. The proposed algorithm can effectively learn and track an evolving non-linear subspace in an online fashion. The notion of non-linearity is accommodated via exploitation of kernel-induced mappings, whose computational as well as memory requirements, if untreated, will impose scalability issues in large datasets. This issue is addressed by imposing a predefined affordable budget on the number of data vectors to be stored, preventing computational and memory growth of the algorithm, while enabling the tracking of possibly evolving subspaces. Numerical tests corroborate the effectiveness of the proposed algorithm on synthetic as well as real datasets.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信