Rinaldo Isnawan Prasetyono, Dyah Anggraini
{"title":"ANALISIS PERAMALAN TINGKAT KEMISKINAN DI INDONESIA DENGAN MODEL ARIMA","authors":"Rinaldo Isnawan Prasetyono, Dyah Anggraini","doi":"10.35760/ik.2021.v26i2.3699","DOIUrl":null,"url":null,"abstract":"Kemiskinan di Indonesia merupakan masalah yang kompleks dan multidimensi, karena tingkat kemiskinan di suatu negara akan mempengaruhi indikator keberhasilan baik dari segi pembangunan maupun perekonomian negara tersebut. Berdasarkan permasalahan tersebut diperlukan sebuah prediksi untuk mengetahui tingkat kemiskinan di Indonesia baik wilayah Perkotaan, Pedesaan maupun secara Nasional. Pada penelitian kali ini, peneliti menggunakan sebuah model dari Box Jenkins yaitu Auto Regresive Moving Average (ARIMA) untuk memprediksi tingkat kemiskinan di Indonesia pada masa yang akan datang. Dataset kemiskinan yang digunakan bersumber dari Badan Pusat Statistik (BPS) dengan data pengujian dari tahun 2011 hingga tahun 2020. Peneliti akan menggunakan 3 parameter error untuk mengevaluasi hasil tingkat kemiskinan di Perkotaan, Pedesaan maupun secara Nasional yaitu RMSE, MAE dan MAPE. Berdasarkan pengujian yang dilakukan bahwa dataset perkotaan menghasilkan model ARIMA(2,2,5) sebagai model ARIMA terbaik dengan RMSE=1.246582, MAE=0.923255 dan MAPE=12%, untuk dataset pedesaan menghasilkan model ARIMA(1,2,1) sebagai yang terbaik dengan RMSE=0.392650, MAE=0.311529 dan MAPE=2%. Sedangkan untuk dataset secara nasional menghasilkan model ARIMA(0,2,5) sebagai yang terbaik dengan RMSE=2.533166, MAE=2.090505 dan MAPE=20%. Dari 3 pengujian tersebut disimpulkan bahwa model ARIMA berhasil memprediksi tingkat kemiskinan di Indonesia baik wilayah Perkotaan, Pedesaan maupun secara Nasional dengan hasil baik.","PeriodicalId":428168,"journal":{"name":"Jurnal Ilmiah Informatika Komputer","volume":"134 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-08-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Jurnal Ilmiah Informatika Komputer","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.35760/ik.2021.v26i2.3699","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

印度尼西亚的贫困是一个复杂的、多维的问题,因为一个国家的贫困水平将影响其发展和经济成功的指标。基于这一问题,需要做出预测,以了解印度尼西亚的城市、农村和国家贫困率。在目前的研究中,研究人员使用詹金斯盒子模型的模型来预测未来印尼的贫困水平。2011年至2020年的测试数据来自中央统计机构(BPS)使用的贫困数据。研究人员将使用3个错误参数来评估城市、农村以及国内RMSE、MAE和MAPE贫困率的结果。根据一项测试,城市数据集产生ARIMA模型(2.2.5),作为RMSE=1.246582, MAE=0.923255, MAE= 12%,农村数据集产生ARIMA模型=0.392650,MAE=0.311529, MAPE=2%。然而在全国范围内,我们发现ARIMA模型(0.2.5)是RMSE= 2,533166, MAE= 2,090505, MAPE=20%。从这三项测试得出结论,ARIMA模型成功地预测了印度尼西亚的城市、农村和国家贫困率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
ANALISIS PERAMALAN TINGKAT KEMISKINAN DI INDONESIA DENGAN MODEL ARIMA
Kemiskinan di Indonesia merupakan masalah yang kompleks dan multidimensi, karena tingkat kemiskinan di suatu negara akan mempengaruhi indikator keberhasilan baik dari segi pembangunan maupun perekonomian negara tersebut. Berdasarkan permasalahan tersebut diperlukan sebuah prediksi untuk mengetahui tingkat kemiskinan di Indonesia baik wilayah Perkotaan, Pedesaan maupun secara Nasional. Pada penelitian kali ini, peneliti menggunakan sebuah model dari Box Jenkins yaitu Auto Regresive Moving Average (ARIMA) untuk memprediksi tingkat kemiskinan di Indonesia pada masa yang akan datang. Dataset kemiskinan yang digunakan bersumber dari Badan Pusat Statistik (BPS) dengan data pengujian dari tahun 2011 hingga tahun 2020. Peneliti akan menggunakan 3 parameter error untuk mengevaluasi hasil tingkat kemiskinan di Perkotaan, Pedesaan maupun secara Nasional yaitu RMSE, MAE dan MAPE. Berdasarkan pengujian yang dilakukan bahwa dataset perkotaan menghasilkan model ARIMA(2,2,5) sebagai model ARIMA terbaik dengan RMSE=1.246582, MAE=0.923255 dan MAPE=12%, untuk dataset pedesaan menghasilkan model ARIMA(1,2,1) sebagai yang terbaik dengan RMSE=0.392650, MAE=0.311529 dan MAPE=2%. Sedangkan untuk dataset secara nasional menghasilkan model ARIMA(0,2,5) sebagai yang terbaik dengan RMSE=2.533166, MAE=2.090505 dan MAPE=20%. Dari 3 pengujian tersebut disimpulkan bahwa model ARIMA berhasil memprediksi tingkat kemiskinan di Indonesia baik wilayah Perkotaan, Pedesaan maupun secara Nasional dengan hasil baik.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信