{"title":"广义相关学习向量量化中学习率优化的随机逼近","authors":"Daniel W. Steeneck, Trevor J. Bihl","doi":"10.1109/NAECON.2017.8268804","DOIUrl":null,"url":null,"abstract":"Herein the authors apply the stochastic approximation method of Kiefer and Wolfowitz to optimize learning rate selection for Generalized Relevance Learning Vector Quantization — Improved (GRLVQI) neural networks with application to Z-Wave cyber-physical device identification. Recent work on full factorial models for GRLVQI optimal settings has shown promise, but is computationally costly and not feasible for large datasets. Results using stochastic optimization illustrate show fast convergence to high classification rates.","PeriodicalId":306091,"journal":{"name":"2017 IEEE National Aerospace and Electronics Conference (NAECON)","volume":"57 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Stochastic approximation for learning rate optimization for generalized relevance learning vector quantization\",\"authors\":\"Daniel W. Steeneck, Trevor J. Bihl\",\"doi\":\"10.1109/NAECON.2017.8268804\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Herein the authors apply the stochastic approximation method of Kiefer and Wolfowitz to optimize learning rate selection for Generalized Relevance Learning Vector Quantization — Improved (GRLVQI) neural networks with application to Z-Wave cyber-physical device identification. Recent work on full factorial models for GRLVQI optimal settings has shown promise, but is computationally costly and not feasible for large datasets. Results using stochastic optimization illustrate show fast convergence to high classification rates.\",\"PeriodicalId\":306091,\"journal\":{\"name\":\"2017 IEEE National Aerospace and Electronics Conference (NAECON)\",\"volume\":\"57 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 IEEE National Aerospace and Electronics Conference (NAECON)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/NAECON.2017.8268804\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE National Aerospace and Electronics Conference (NAECON)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NAECON.2017.8268804","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Stochastic approximation for learning rate optimization for generalized relevance learning vector quantization
Herein the authors apply the stochastic approximation method of Kiefer and Wolfowitz to optimize learning rate selection for Generalized Relevance Learning Vector Quantization — Improved (GRLVQI) neural networks with application to Z-Wave cyber-physical device identification. Recent work on full factorial models for GRLVQI optimal settings has shown promise, but is computationally costly and not feasible for large datasets. Results using stochastic optimization illustrate show fast convergence to high classification rates.