Yi Zhao, Juepeng Zheng, H. Fu, Wenzhao Wu, Jie Gao, Mengxuan Chen, Jinxiao Zhang, Lixian Zhang, Runmin Dong, Z. Du, Sha Liu, Xin Liu, Shaoqing Zhang, Le Yu
{"title":"SW-LCM:一种基于新神威超级计算机的可扩展和弱监督土地覆盖制图方法","authors":"Yi Zhao, Juepeng Zheng, H. Fu, Wenzhao Wu, Jie Gao, Mengxuan Chen, Jinxiao Zhang, Lixian Zhang, Runmin Dong, Z. Du, Sha Liu, Xin Liu, Shaoqing Zhang, Le Yu","doi":"10.1109/IPDPS54959.2023.00071","DOIUrl":null,"url":null,"abstract":"High-resolution land cover mapping (LCM) is an important application for studying and understanding the change of the earth surface. While deep learning (DL) methods demonstrate great potential in analyzing satellite images, they largely depend on massive high-quality labels. This paper proposes SW-LCM, a Scalable and Weakly-supervised two-stage Land Cover Mapping method on a new Sunway Supercomputer. Our method consists of a k-means clustering module as a first stage, and an iterative deep learning module as a second stage. With the k-means module providing a good enough starting point (taking inaccurate results as noisy labels), the deep learning module improves the classification results in an iterative way, without any labelling efforts required for processing large scenarios. To achieve efficiency for country-level land cover mapping, we design a customized data partition scheme and an on-the-fly assembly for k-means. Through careful parallelization and optimization, our k-means module scales to 98,304 computing nodes (over 38 million cores), and provides a sustained performance of 437.56 PFLOPS, in a real LCM task of the entire region of China; the iterative updating part scales to 24,576 nodes, with a performance of 11 PFLOPS. We produce a 10-m resolution land cover map of China, with an accuracy of 83.5% (10-class) or 73.2% (25-class), 7% to 8% higher than best existing products, paving ways for finer land surveys to support sustainability-related applications.","PeriodicalId":343684,"journal":{"name":"2023 IEEE International Parallel and Distributed Processing Symposium (IPDPS)","volume":"48 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"SW-LCM: A Scalable and Weakly-supervised Land Cover Mapping Method on a New Sunway Supercomputer\",\"authors\":\"Yi Zhao, Juepeng Zheng, H. Fu, Wenzhao Wu, Jie Gao, Mengxuan Chen, Jinxiao Zhang, Lixian Zhang, Runmin Dong, Z. Du, Sha Liu, Xin Liu, Shaoqing Zhang, Le Yu\",\"doi\":\"10.1109/IPDPS54959.2023.00071\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"High-resolution land cover mapping (LCM) is an important application for studying and understanding the change of the earth surface. While deep learning (DL) methods demonstrate great potential in analyzing satellite images, they largely depend on massive high-quality labels. This paper proposes SW-LCM, a Scalable and Weakly-supervised two-stage Land Cover Mapping method on a new Sunway Supercomputer. Our method consists of a k-means clustering module as a first stage, and an iterative deep learning module as a second stage. With the k-means module providing a good enough starting point (taking inaccurate results as noisy labels), the deep learning module improves the classification results in an iterative way, without any labelling efforts required for processing large scenarios. To achieve efficiency for country-level land cover mapping, we design a customized data partition scheme and an on-the-fly assembly for k-means. Through careful parallelization and optimization, our k-means module scales to 98,304 computing nodes (over 38 million cores), and provides a sustained performance of 437.56 PFLOPS, in a real LCM task of the entire region of China; the iterative updating part scales to 24,576 nodes, with a performance of 11 PFLOPS. We produce a 10-m resolution land cover map of China, with an accuracy of 83.5% (10-class) or 73.2% (25-class), 7% to 8% higher than best existing products, paving ways for finer land surveys to support sustainability-related applications.\",\"PeriodicalId\":343684,\"journal\":{\"name\":\"2023 IEEE International Parallel and Distributed Processing Symposium (IPDPS)\",\"volume\":\"48 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 IEEE International Parallel and Distributed Processing Symposium (IPDPS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IPDPS54959.2023.00071\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE International Parallel and Distributed Processing Symposium (IPDPS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IPDPS54959.2023.00071","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
SW-LCM: A Scalable and Weakly-supervised Land Cover Mapping Method on a New Sunway Supercomputer
High-resolution land cover mapping (LCM) is an important application for studying and understanding the change of the earth surface. While deep learning (DL) methods demonstrate great potential in analyzing satellite images, they largely depend on massive high-quality labels. This paper proposes SW-LCM, a Scalable and Weakly-supervised two-stage Land Cover Mapping method on a new Sunway Supercomputer. Our method consists of a k-means clustering module as a first stage, and an iterative deep learning module as a second stage. With the k-means module providing a good enough starting point (taking inaccurate results as noisy labels), the deep learning module improves the classification results in an iterative way, without any labelling efforts required for processing large scenarios. To achieve efficiency for country-level land cover mapping, we design a customized data partition scheme and an on-the-fly assembly for k-means. Through careful parallelization and optimization, our k-means module scales to 98,304 computing nodes (over 38 million cores), and provides a sustained performance of 437.56 PFLOPS, in a real LCM task of the entire region of China; the iterative updating part scales to 24,576 nodes, with a performance of 11 PFLOPS. We produce a 10-m resolution land cover map of China, with an accuracy of 83.5% (10-class) or 73.2% (25-class), 7% to 8% higher than best existing products, paving ways for finer land surveys to support sustainability-related applications.