{"title":"相关逻辑的模标记演算","authors":"Fabio De Martin Polo","doi":"10.26686/ajl.v20i1.7990","DOIUrl":null,"url":null,"abstract":"\n \n \nIn this article, we perform a detailed proof theoretic investigation of a wide number of relevant logics by employing the well-established methodology of labelled sequent calculi to build our intended systems. At the semantic level, we will characterise relevant logics by employing reduced Routley-Meyer models, namely, relational structures with a ternary relation between worlds along with a unique distinct element considered as the real (or actual) world. This paper realizes the idea of building a variety of modular labelled calculi by reflecting, at the syntactic level, semantic informations taken from reduced Routley-Meyer models. Central results include proofs of soundness and completeness, as well as a proof of cut- admissibility. \n \n \n","PeriodicalId":367849,"journal":{"name":"The Australasian Journal of Logic","volume":"134 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-04-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Modular labelled calculi for relevant logics\",\"authors\":\"Fabio De Martin Polo\",\"doi\":\"10.26686/ajl.v20i1.7990\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n \\n \\nIn this article, we perform a detailed proof theoretic investigation of a wide number of relevant logics by employing the well-established methodology of labelled sequent calculi to build our intended systems. At the semantic level, we will characterise relevant logics by employing reduced Routley-Meyer models, namely, relational structures with a ternary relation between worlds along with a unique distinct element considered as the real (or actual) world. This paper realizes the idea of building a variety of modular labelled calculi by reflecting, at the syntactic level, semantic informations taken from reduced Routley-Meyer models. Central results include proofs of soundness and completeness, as well as a proof of cut- admissibility. \\n \\n \\n\",\"PeriodicalId\":367849,\"journal\":{\"name\":\"The Australasian Journal of Logic\",\"volume\":\"134 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-04-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The Australasian Journal of Logic\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.26686/ajl.v20i1.7990\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Australasian Journal of Logic","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.26686/ajl.v20i1.7990","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
In this article, we perform a detailed proof theoretic investigation of a wide number of relevant logics by employing the well-established methodology of labelled sequent calculi to build our intended systems. At the semantic level, we will characterise relevant logics by employing reduced Routley-Meyer models, namely, relational structures with a ternary relation between worlds along with a unique distinct element considered as the real (or actual) world. This paper realizes the idea of building a variety of modular labelled calculi by reflecting, at the syntactic level, semantic informations taken from reduced Routley-Meyer models. Central results include proofs of soundness and completeness, as well as a proof of cut- admissibility.