利用局部海底特征减少目标自动识别中的虚警

O. Daniell, Y. Pétillot, S. Reed, J. Vázquez, Andrea Frau
{"title":"利用局部海底特征减少目标自动识别中的虚警","authors":"O. Daniell, Y. Pétillot, S. Reed, J. Vázquez, Andrea Frau","doi":"10.1109/SSPD.2014.6943308","DOIUrl":null,"url":null,"abstract":"This paper describes the use of local sea-floor characteristics to train a neural network to remove false alarms from an Automatic Target Recognition (ATR) algorithm. We demonstrate that this reduces the Probability of False Alarm (PFA) in difficult areas without impacting the Probability of Detection (PD) in flat areas. The sea-floor characteristics are calculated from the texture and appearance of clutter on the seafloor. Textural characteristics are extracted using a Dual Tree Wavelet (DTW) transform. Highlight and shadow regions are segmented using Markov Random Field (MRF) and graph cuts. Clutter density and height are calculated from the segmented image. The method is tested by training a neural network to filter the detections from a Haar cascade ATR algorithm. The neural network is trained on the ATR response and the seafloor characteristics. On Synthetic Aperture Sonar (SAS) data we report an average reduction of 50% in the false alarm rate over that of the ATR algorithm. The processing time for an 8000×3000 pixel image is approximately 1 second.","PeriodicalId":133530,"journal":{"name":"2014 Sensor Signal Processing for Defence (SSPD)","volume":"53 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-11-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":"{\"title\":\"Reducing false alarms in automated target recognition using local sea-floor characteristics\",\"authors\":\"O. Daniell, Y. Pétillot, S. Reed, J. Vázquez, Andrea Frau\",\"doi\":\"10.1109/SSPD.2014.6943308\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper describes the use of local sea-floor characteristics to train a neural network to remove false alarms from an Automatic Target Recognition (ATR) algorithm. We demonstrate that this reduces the Probability of False Alarm (PFA) in difficult areas without impacting the Probability of Detection (PD) in flat areas. The sea-floor characteristics are calculated from the texture and appearance of clutter on the seafloor. Textural characteristics are extracted using a Dual Tree Wavelet (DTW) transform. Highlight and shadow regions are segmented using Markov Random Field (MRF) and graph cuts. Clutter density and height are calculated from the segmented image. The method is tested by training a neural network to filter the detections from a Haar cascade ATR algorithm. The neural network is trained on the ATR response and the seafloor characteristics. On Synthetic Aperture Sonar (SAS) data we report an average reduction of 50% in the false alarm rate over that of the ATR algorithm. The processing time for an 8000×3000 pixel image is approximately 1 second.\",\"PeriodicalId\":133530,\"journal\":{\"name\":\"2014 Sensor Signal Processing for Defence (SSPD)\",\"volume\":\"53 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-11-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"13\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 Sensor Signal Processing for Defence (SSPD)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SSPD.2014.6943308\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 Sensor Signal Processing for Defence (SSPD)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SSPD.2014.6943308","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13

摘要

本文描述了利用局部海底特征来训练神经网络以消除自动目标识别(ATR)算法中的假警报。我们证明了这在不影响平坦区域的检测概率(PD)的情况下降低了困难区域的虚警概率(PFA)。海底特征是根据海底杂波的纹理和外观来计算的。采用双树小波(DTW)变换提取纹理特征。使用马尔科夫随机场(MRF)和图切割分割高光和阴影区域。从分割后的图像中计算杂波密度和高度。通过训练神经网络对Haar级联ATR算法的检测结果进行过滤,验证了该方法的有效性。神经网络是根据ATR响应和海底特征进行训练的。在合成孔径声呐(SAS)数据上,我们报告了与ATR算法相比,误报率平均降低了50%。8000×3000像素图像的处理时间约为1秒。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Reducing false alarms in automated target recognition using local sea-floor characteristics
This paper describes the use of local sea-floor characteristics to train a neural network to remove false alarms from an Automatic Target Recognition (ATR) algorithm. We demonstrate that this reduces the Probability of False Alarm (PFA) in difficult areas without impacting the Probability of Detection (PD) in flat areas. The sea-floor characteristics are calculated from the texture and appearance of clutter on the seafloor. Textural characteristics are extracted using a Dual Tree Wavelet (DTW) transform. Highlight and shadow regions are segmented using Markov Random Field (MRF) and graph cuts. Clutter density and height are calculated from the segmented image. The method is tested by training a neural network to filter the detections from a Haar cascade ATR algorithm. The neural network is trained on the ATR response and the seafloor characteristics. On Synthetic Aperture Sonar (SAS) data we report an average reduction of 50% in the false alarm rate over that of the ATR algorithm. The processing time for an 8000×3000 pixel image is approximately 1 second.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信