SemStim:利用知识图谱进行跨领域推荐

B. Heitmann, Conor Hayes
{"title":"SemStim:利用知识图谱进行跨领域推荐","authors":"B. Heitmann, Conor Hayes","doi":"10.1109/ICDMW.2016.0145","DOIUrl":null,"url":null,"abstract":"In this paper we introduce SemStim, an unsupervised graph-based algorithm that addresses the cross-domain recommendation task. In this task, preferences from one conceptual domain (e.g. movies) are used to recommend items belonging to another domain (e.g. music). SemStim exploits the semantic links found in a knowledge graph (e.g. DBpedia), to connect domains and thus generate recommendations. As a key benefit, our algorithm does not require (1) ratings in the target domain, thus mitigating the cold-start problem and (2) overlap between users or items from the source and target domains. In contrast, current state-of-the-art personalisation approaches either have an inherent limitation to one domain or require rating data in the source and target domains. We evaluate SemStim by comparing its accuracy to state-of-the-art algorithms for the top-k recommendation task, for both single-domain and cross-domain recommendations. We show that SemStim enables cross-domain recommendation, and that in addition, it has a significantly better accuracy than the baseline algorithms.","PeriodicalId":373866,"journal":{"name":"2016 IEEE 16th International Conference on Data Mining Workshops (ICDMW)","volume":"39 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"SemStim: Exploiting Knowledge Graphs for Cross-Domain Recommendation\",\"authors\":\"B. Heitmann, Conor Hayes\",\"doi\":\"10.1109/ICDMW.2016.0145\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we introduce SemStim, an unsupervised graph-based algorithm that addresses the cross-domain recommendation task. In this task, preferences from one conceptual domain (e.g. movies) are used to recommend items belonging to another domain (e.g. music). SemStim exploits the semantic links found in a knowledge graph (e.g. DBpedia), to connect domains and thus generate recommendations. As a key benefit, our algorithm does not require (1) ratings in the target domain, thus mitigating the cold-start problem and (2) overlap between users or items from the source and target domains. In contrast, current state-of-the-art personalisation approaches either have an inherent limitation to one domain or require rating data in the source and target domains. We evaluate SemStim by comparing its accuracy to state-of-the-art algorithms for the top-k recommendation task, for both single-domain and cross-domain recommendations. We show that SemStim enables cross-domain recommendation, and that in addition, it has a significantly better accuracy than the baseline algorithms.\",\"PeriodicalId\":373866,\"journal\":{\"name\":\"2016 IEEE 16th International Conference on Data Mining Workshops (ICDMW)\",\"volume\":\"39 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 IEEE 16th International Conference on Data Mining Workshops (ICDMW)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICDMW.2016.0145\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE 16th International Conference on Data Mining Workshops (ICDMW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDMW.2016.0145","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

摘要

本文介绍了一种基于无监督图的算法SemStim,用于解决跨域推荐任务。在这个任务中,来自一个概念领域(例如电影)的偏好被用来推荐属于另一个领域(例如音乐)的项目。SemStim利用知识图(例如DBpedia)中的语义链接来连接域,从而生成推荐。作为一个关键的好处,我们的算法不需要(1)在目标领域的评级,从而减轻了冷启动问题和(2)来自源和目标领域的用户或项目之间的重叠。相比之下,当前最先进的个性化方法要么对一个领域有固有的限制,要么需要源和目标领域的评级数据。我们通过比较SemStim在单域和跨域推荐任务中与top-k推荐任务的最先进算法的准确性来评估SemStim。我们证明SemStim支持跨域推荐,此外,它具有比基线算法更好的准确性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
SemStim: Exploiting Knowledge Graphs for Cross-Domain Recommendation
In this paper we introduce SemStim, an unsupervised graph-based algorithm that addresses the cross-domain recommendation task. In this task, preferences from one conceptual domain (e.g. movies) are used to recommend items belonging to another domain (e.g. music). SemStim exploits the semantic links found in a knowledge graph (e.g. DBpedia), to connect domains and thus generate recommendations. As a key benefit, our algorithm does not require (1) ratings in the target domain, thus mitigating the cold-start problem and (2) overlap between users or items from the source and target domains. In contrast, current state-of-the-art personalisation approaches either have an inherent limitation to one domain or require rating data in the source and target domains. We evaluate SemStim by comparing its accuracy to state-of-the-art algorithms for the top-k recommendation task, for both single-domain and cross-domain recommendations. We show that SemStim enables cross-domain recommendation, and that in addition, it has a significantly better accuracy than the baseline algorithms.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信