基于深度外观学习的GM-PHD滤波器在线多目标视觉跟踪

Nathanael L. Baisa
{"title":"基于深度外观学习的GM-PHD滤波器在线多目标视觉跟踪","authors":"Nathanael L. Baisa","doi":"10.23919/fusion43075.2019.9011441","DOIUrl":null,"url":null,"abstract":"We propose a new online multi-object visual tracker based on a Gaussian mixture Probability Hypothesis Density (GM-PHD) filter in combination with a similarity Convolutional Neural Network (CNN). The GM-PHD filter estimates the states and cardinality of an unknown and time varying number of targets in the scene handling target birth, death, clutter (false alarms) and missing detections in a unified framework, and has a linear complexity with the number of targets. However, it lacks the identity of targets. We combine spatio-temporal and visual similarities obtained from object bounding boxes and deep CNN appearance features, respectively, to alleviate its shortcoming of labelling targets across frames. We apply this developed method for tracking multiple targets in video sequences acquired under varying environmental conditions and targets density using a tracking-by-detection approach. Finally, we carry out extensive experiments on Multiple Object Tracking 2016 (MOTI6) and 2017 (MOTI7) benchmark datasets and find out that our tracker significantly outperforms several state-of-the-art trackers in terms of tracking accuracy and precision.","PeriodicalId":348881,"journal":{"name":"2019 22th International Conference on Information Fusion (FUSION)","volume":"303 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"19","resultStr":"{\"title\":\"Online Multi-object Visual Tracking using a GM-PHD Filter with Deep Appearance Learning\",\"authors\":\"Nathanael L. Baisa\",\"doi\":\"10.23919/fusion43075.2019.9011441\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We propose a new online multi-object visual tracker based on a Gaussian mixture Probability Hypothesis Density (GM-PHD) filter in combination with a similarity Convolutional Neural Network (CNN). The GM-PHD filter estimates the states and cardinality of an unknown and time varying number of targets in the scene handling target birth, death, clutter (false alarms) and missing detections in a unified framework, and has a linear complexity with the number of targets. However, it lacks the identity of targets. We combine spatio-temporal and visual similarities obtained from object bounding boxes and deep CNN appearance features, respectively, to alleviate its shortcoming of labelling targets across frames. We apply this developed method for tracking multiple targets in video sequences acquired under varying environmental conditions and targets density using a tracking-by-detection approach. Finally, we carry out extensive experiments on Multiple Object Tracking 2016 (MOTI6) and 2017 (MOTI7) benchmark datasets and find out that our tracker significantly outperforms several state-of-the-art trackers in terms of tracking accuracy and precision.\",\"PeriodicalId\":348881,\"journal\":{\"name\":\"2019 22th International Conference on Information Fusion (FUSION)\",\"volume\":\"303 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"19\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 22th International Conference on Information Fusion (FUSION)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.23919/fusion43075.2019.9011441\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 22th International Conference on Information Fusion (FUSION)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/fusion43075.2019.9011441","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 19

摘要

本文提出了一种基于高斯混合概率假设密度(GM-PHD)滤波器与相似卷积神经网络(CNN)相结合的在线多目标视觉跟踪器。GM-PHD滤波器在一个统一的框架内对场景中未知和时变数量目标的状态和基数进行估计,处理目标的出生、死亡、杂波(假警报)和缺失检测,并且具有与目标数量线性的复杂性。然而,它缺乏目标的身份。我们将物体边界盒和深度CNN外观特征分别获得的时空和视觉相似性相结合,以缓解其跨帧标记目标的缺点。我们将这种开发的方法应用于在不同环境条件和目标密度下获取的视频序列中使用检测跟踪方法跟踪多个目标。最后,我们在多目标跟踪2016 (MOTI6)和2017 (MOTI7)基准数据集上进行了广泛的实验,发现我们的跟踪器在跟踪精度和精度方面明显优于几种最先进的跟踪器。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Online Multi-object Visual Tracking using a GM-PHD Filter with Deep Appearance Learning
We propose a new online multi-object visual tracker based on a Gaussian mixture Probability Hypothesis Density (GM-PHD) filter in combination with a similarity Convolutional Neural Network (CNN). The GM-PHD filter estimates the states and cardinality of an unknown and time varying number of targets in the scene handling target birth, death, clutter (false alarms) and missing detections in a unified framework, and has a linear complexity with the number of targets. However, it lacks the identity of targets. We combine spatio-temporal and visual similarities obtained from object bounding boxes and deep CNN appearance features, respectively, to alleviate its shortcoming of labelling targets across frames. We apply this developed method for tracking multiple targets in video sequences acquired under varying environmental conditions and targets density using a tracking-by-detection approach. Finally, we carry out extensive experiments on Multiple Object Tracking 2016 (MOTI6) and 2017 (MOTI7) benchmark datasets and find out that our tracker significantly outperforms several state-of-the-art trackers in terms of tracking accuracy and precision.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信