Cox-PASNet:基于路径的稀疏深度神经网络生存分析

Jie Hao, Youngsoon Kim, Tejaswini Mallavarapu, J. Oh, Mingon Kang
{"title":"Cox-PASNet:基于路径的稀疏深度神经网络生存分析","authors":"Jie Hao, Youngsoon Kim, Tejaswini Mallavarapu, J. Oh, Mingon Kang","doi":"10.1109/BIBM.2018.8621345","DOIUrl":null,"url":null,"abstract":"An in-depth understanding of complex biological processes associated to patients’ survival time at the cellular and molecular level is critical not only for developing new treatments for patients but also for accurate survival prediction. However, highly nonlinear and high-dimension, low-sample size (HDLSS) data cause computational challenges in survival analysis. We developed a novel pathway-based, sparse deep neural network, called Cox-PASNet, for survival analysis by integrating highdimensional gene expression data and clinical data. Cox-PASNet is a biologically interpretable neural network model where nodes in the network correspond to specific genes and pathways, while capturing nonlinear and hierarchical effects of biological pathways to a patient’s survival. We also provide a solution to train the deep neural network model with HDLSS data. Cox-PASNet was evaluated by comparing the performance of different cutting-edge survival methods such as Cox-nnet, SurvivalNet, and Cox elastic net (Cox-EN). Cox-PASNet significantly outperformed the benchmarking methods, and the outstanding performance was statistically assessed. We provide an open-source software implemented in PyTorch (https://github.com/DataX-JieHao/Cox-PASNet) that enables automatic training, evaluation, and interpretation of Cox-PASNet.","PeriodicalId":108667,"journal":{"name":"2018 IEEE International Conference on Bioinformatics and Biomedicine (BIBM)","volume":"148 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"19","resultStr":"{\"title\":\"Cox-PASNet: Pathway-based Sparse Deep Neural Network for Survival Analysis\",\"authors\":\"Jie Hao, Youngsoon Kim, Tejaswini Mallavarapu, J. Oh, Mingon Kang\",\"doi\":\"10.1109/BIBM.2018.8621345\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"An in-depth understanding of complex biological processes associated to patients’ survival time at the cellular and molecular level is critical not only for developing new treatments for patients but also for accurate survival prediction. However, highly nonlinear and high-dimension, low-sample size (HDLSS) data cause computational challenges in survival analysis. We developed a novel pathway-based, sparse deep neural network, called Cox-PASNet, for survival analysis by integrating highdimensional gene expression data and clinical data. Cox-PASNet is a biologically interpretable neural network model where nodes in the network correspond to specific genes and pathways, while capturing nonlinear and hierarchical effects of biological pathways to a patient’s survival. We also provide a solution to train the deep neural network model with HDLSS data. Cox-PASNet was evaluated by comparing the performance of different cutting-edge survival methods such as Cox-nnet, SurvivalNet, and Cox elastic net (Cox-EN). Cox-PASNet significantly outperformed the benchmarking methods, and the outstanding performance was statistically assessed. We provide an open-source software implemented in PyTorch (https://github.com/DataX-JieHao/Cox-PASNet) that enables automatic training, evaluation, and interpretation of Cox-PASNet.\",\"PeriodicalId\":108667,\"journal\":{\"name\":\"2018 IEEE International Conference on Bioinformatics and Biomedicine (BIBM)\",\"volume\":\"148 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"19\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE International Conference on Bioinformatics and Biomedicine (BIBM)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/BIBM.2018.8621345\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE International Conference on Bioinformatics and Biomedicine (BIBM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BIBM.2018.8621345","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 19

摘要

在细胞和分子水平上深入了解与患者生存时间相关的复杂生物学过程不仅对开发新的治疗方法至关重要,而且对准确的生存预测也至关重要。然而,高度非线性和高维、低样本量(HDLSS)数据给生存分析带来了计算上的挑战。我们开发了一种新的基于通路的稀疏深度神经网络,称为Cox-PASNet,通过整合高维基因表达数据和临床数据来进行生存分析。Cox-PASNet是一种生物可解释的神经网络模型,其中网络中的节点对应于特定的基因和通路,同时捕获生物通路对患者生存的非线性和分层效应。我们还提供了一个利用HDLSS数据训练深度神经网络模型的解决方案。通过比较Cox-nnet、SurvivalNet和Cox弹性网(Cox- en)等不同尖端生存方法的性能,对Cox- pasnet进行了评估。Cox-PASNet显著优于基准测试方法,并对出色的性能进行了统计评估。我们提供了一个在PyTorch (https://github.com/DataX-JieHao/Cox-PASNet)中实现的开源软件,可以自动训练,评估和解释Cox-PASNet。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Cox-PASNet: Pathway-based Sparse Deep Neural Network for Survival Analysis
An in-depth understanding of complex biological processes associated to patients’ survival time at the cellular and molecular level is critical not only for developing new treatments for patients but also for accurate survival prediction. However, highly nonlinear and high-dimension, low-sample size (HDLSS) data cause computational challenges in survival analysis. We developed a novel pathway-based, sparse deep neural network, called Cox-PASNet, for survival analysis by integrating highdimensional gene expression data and clinical data. Cox-PASNet is a biologically interpretable neural network model where nodes in the network correspond to specific genes and pathways, while capturing nonlinear and hierarchical effects of biological pathways to a patient’s survival. We also provide a solution to train the deep neural network model with HDLSS data. Cox-PASNet was evaluated by comparing the performance of different cutting-edge survival methods such as Cox-nnet, SurvivalNet, and Cox elastic net (Cox-EN). Cox-PASNet significantly outperformed the benchmarking methods, and the outstanding performance was statistically assessed. We provide an open-source software implemented in PyTorch (https://github.com/DataX-JieHao/Cox-PASNet) that enables automatic training, evaluation, and interpretation of Cox-PASNet.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信