人工免疫系统中消极选择和积极选择的新组合

Van Truong Nguyen, N. X. Hoai, C. Luong
{"title":"人工免疫系统中消极选择和积极选择的新组合","authors":"Van Truong Nguyen, N. X. Hoai, C. Luong","doi":"10.1109/RIVF.2013.6719857","DOIUrl":null,"url":null,"abstract":"Artificial Immune System (AIS) is a multidisciplinary research area that combines the principles of immunology and computation. Negative Selection Algorithms (NSA) is one of the most popular models of AIS mainly designed for one-class learning problems such as anomaly detection [1]. Positive Selection Algorithms (PSA) is the twin brother of NSA with similar performance for AIS [2]. Both NSAs and PSAs comprise of two phases: generating a set D of detectors from a given set S of selves (detector generation phase); and then detecting if a given cell (new data instance) is self or non-self using the generated detector set (detection phase). In this paper, we propose a novel approach to combining NSAs and PSAs that employ binary representation and r-chunk matching rule. The new algorithm achieves smaller detector storage complexity and potentially better detection time in comparison with single NSAs or PSAs.","PeriodicalId":121216,"journal":{"name":"The 2013 RIVF International Conference on Computing & Communication Technologies - Research, Innovation, and Vision for Future (RIVF)","volume":"101 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"A novel combination of negative and positive selection in Artificial Immune Systems\",\"authors\":\"Van Truong Nguyen, N. X. Hoai, C. Luong\",\"doi\":\"10.1109/RIVF.2013.6719857\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Artificial Immune System (AIS) is a multidisciplinary research area that combines the principles of immunology and computation. Negative Selection Algorithms (NSA) is one of the most popular models of AIS mainly designed for one-class learning problems such as anomaly detection [1]. Positive Selection Algorithms (PSA) is the twin brother of NSA with similar performance for AIS [2]. Both NSAs and PSAs comprise of two phases: generating a set D of detectors from a given set S of selves (detector generation phase); and then detecting if a given cell (new data instance) is self or non-self using the generated detector set (detection phase). In this paper, we propose a novel approach to combining NSAs and PSAs that employ binary representation and r-chunk matching rule. The new algorithm achieves smaller detector storage complexity and potentially better detection time in comparison with single NSAs or PSAs.\",\"PeriodicalId\":121216,\"journal\":{\"name\":\"The 2013 RIVF International Conference on Computing & Communication Technologies - Research, Innovation, and Vision for Future (RIVF)\",\"volume\":\"101 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The 2013 RIVF International Conference on Computing & Communication Technologies - Research, Innovation, and Vision for Future (RIVF)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/RIVF.2013.6719857\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The 2013 RIVF International Conference on Computing & Communication Technologies - Research, Innovation, and Vision for Future (RIVF)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/RIVF.2013.6719857","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

摘要

人工免疫系统(Artificial Immune System, AIS)是一个结合免疫学原理和计算原理的多学科研究领域。负选择算法(Negative Selection Algorithms, NSA)是目前最流行的人工智能模型之一,主要针对异常检测[1]等一类学习问题而设计。正选择算法(PSA)是NSA的孪生兄弟,在AIS[2]中具有相似的性能。NSAs和psa都包括两个阶段:从给定的S个自集合生成一组D个检测器(检测器生成阶段);然后使用生成的检测器集检测给定单元格(新数据实例)是自我还是非自我(检测阶段)。本文提出了一种利用二进制表示和r-chunk匹配规则将nsa和psa结合起来的新方法。与单个NSAs或psa相比,新算法实现了更小的检测器存储复杂度和更好的检测时间。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A novel combination of negative and positive selection in Artificial Immune Systems
Artificial Immune System (AIS) is a multidisciplinary research area that combines the principles of immunology and computation. Negative Selection Algorithms (NSA) is one of the most popular models of AIS mainly designed for one-class learning problems such as anomaly detection [1]. Positive Selection Algorithms (PSA) is the twin brother of NSA with similar performance for AIS [2]. Both NSAs and PSAs comprise of two phases: generating a set D of detectors from a given set S of selves (detector generation phase); and then detecting if a given cell (new data instance) is self or non-self using the generated detector set (detection phase). In this paper, we propose a novel approach to combining NSAs and PSAs that employ binary representation and r-chunk matching rule. The new algorithm achieves smaller detector storage complexity and potentially better detection time in comparison with single NSAs or PSAs.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信